特集 学生の研究活動報告 - 国内学会大会・国際会議参加記 37

一定方向から体当たりして 鱗食する魚の左右非対称な 口部骨格構造の応力解析

谷 海 斗 Kaito TANI 機械システム工学科 2022 年度卒業

1. はじめに

本研究は、2023年3月15日に2022年度関西学 生会卒業研究発表講演会で発表を行った. 進化の多 様化と多種共存が豊かなアフリカのタンガニーカ湖 に生息するミクロレピスは、ヒトと同様に利きがあ り、口部に左右非対称な骨格構造を持ち、左の下顎 骨が大きくて口が右に向かって開く魚を「左利 き」、右の下顎骨が大きくて口が左に向かって開く 魚を「右利き」と定義されている(図1).また. それぞれの被食魚の左右どちらか一方から体当たり して鱗食する1)。また、左右非対称な下顎骨の形態 を持つため、骨格構造と力学的因子の関連が予想さ れる. 先行研究では、ミクロレピスの左右の骨の応 力分布の差を評価するため、有限要素解析を行った 結果、図2の白色の線(z軸:魚の長軸)方向の荷 重条件下で、要素長 36μm 以下の有限要素モデルの 応力分布が左右非対称となった. しかし, 魚の体軸 方向と z 軸方向が必ずしも一致していないため, 荷重負荷方向の特定とそれに対する応力解析が必要 である。本研究では、荷重方向を体軸方向へ一致さ せたうえで、複数の魚に対して応力解析を行い、魚 の左右非対称な骨格構造と応力分布の関係を評価し た.

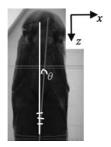


図2 荷重方向の定義

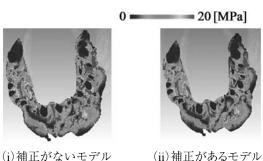
2. 方法

左, 右利き

まず、右利き、左利き、それぞれ9個体のミクロ レピスの標本を魚の長軸方向とz軸が平行になる ように設置し、CT 撮影した後、その画像を基に要 素長 36μm の六面体二次要素で魚の口部を有限要素 モデル化した、次に、材料特性において、ヤング率 を1GPa. ポアソン比を0.3に設定した. その後. 背骨と側頭部の断面の節点を拘束し、CT スキャン と平行な方向(z軸方向)に荷重付与するモデル (白色の線、補正がないモデル)、体軸方向に一致さ せるように口端中央と第三頸骨を結ぶモデル(赤色 の線、補正があるモデル)を作成した上でそれぞれ に 5N の荷重を与えて応力解析を行った. さらに. 魚の左右計18個体でも同様に応力解析を行い、個 体ごとに下顎骨、左下顎骨と右下顎骨の平均を計算 し, 左右性指数を式(1) により計算して評価し た2).

$$Index = \frac{mean(R) - mean(L)}{mean(c(L, R))}$$
 (1)

Index:左右性指数


mean(R):右下顎骨の平均 mean(L):左下顎骨の平均

mean(c(L, R)):下顎骨の全平均

3. 結果と考察

要素長 36μm の補正がないモデルとあるモデルおよび、右利きと左利きの応力分布の一例を図3、左

右性指数の分布表を図4に示す. 図3の(i), (ii) に示すように、荷重方向の差による応力分布の左右 差は認められなかった. これは、図2の赤色と白色 のなす角が7°から17.5°と微小で,応力分布に与 える影響が小さかったためと理解できる. また, 図 3の(iii), (iv) に示すように, 左利きは右側面で 応力が高く発生し、右利きは左側面で応力が高く発 生した. これは図4の左右性指数の分布表からもわ かり、左利きは9個体中6個体が正の値で、右骨の 応力が高く発生し、右利きは9個体中6個体が負の 値で左骨の応力が高く発生した。この結果から、18 個体中 12 個体が利き側の応力が小さいことが示さ れた. これは、利き側の下顎が捕食の際に衝撃を受 け、骨構造が密に発達し、強度が高くなった可能性 が考えられる. また、個体による応力のばらつき は、利き側の下顎骨の発達が各個体により差がある ためと考えられる.

(iii) 左利き正面

(iv) 右利き正面

図3 要素長 36µm の有限要素の応力分布

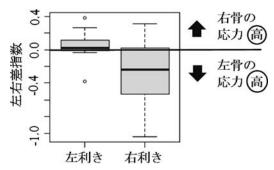


図4 魚の左利き,右利きの左右性指数

4. 結言

ミクロレピスの応力解析の結果, 荷重方向の補正 の有無にかかわらず、応力分布は左右非対称である ことが示された. また、複数個体の左右で異なる応 力分布が得られ、特徴的な捕食行動と下顎骨の形態 および、その応力分布の間に密接な関連があること が示唆された.

5. おわりに

本研究は、2021-2022 年度龍谷大学科学技術共同 センターによる研究助成を受けて、著者が龍谷大学 理工学部機械システム工学科 4 年在学時に行ったも のです.

参考文献

- 1) Witten PE, et. al. Biol. Rev. Camb. Philos. Soc. 84(2), (2009), 315-346.
- 2) Sara M. Schaafsma, et. al. Animal Behaviour 81, (2011), 283-288.