特集 学生の研究活動報告-国内学会大会・国際会議参加記 32

第63回宇宙科学技術連合講演会 に参加して

吉 村 勇 人 Yuto YOSHIMURA 機械システム工学専攻修士課程 2019 年度修了

1. はじめに

私は 2019 年 11 月 6 日から 8 日にかけて徳島市で 開催された第 63 回宇宙科学技術連合講演会に参加 し,「インフレータブルバルートの柔軟性が空力特 性に与える影響」という題目でポスター発表を行っ た.

2. 研究概要

小惑星探査機のサンプルリターンカプセルにおけ る最重要課題として、地球に持ち帰ることのできる 試料の量(ペイロード)の増加が挙げられる.この ペイロードを増加させるために、バルートと呼ばれ る減速装置を展開し、高高度で減速することで空力 加熱を軽減し、耐熱材やアブレータの体積を減少さ せることを本研究の目的としている.

しかしながら,バルートにも多くの課題があり, その中でも,空気力による形状変化が挙げられる. この形状変化により,投影面積が減少することで, 抗力値も減少してしまうと予想される.つまり,バ ルートの形状変化が抗力値にどのような影響を与え るか把握する必要がある.したがって,本研究で は,バルートの柔軟性を変化させた模型を用いて遷 音速風洞実験を行い,流体構造連成解析の結果と比 較し,バルートの柔軟性と空力特性の関係を調査し た.

3. 遷音速風洞実験および流体構造連成解析

3.1 遷音速風洞実験

本研究では、宇宙科学研究所(ISAS/JAXA)が所 有する遷音速風洞を用いて実験を行った.実験条件 はマッハ1.3、静圧 53.1 kPa、動圧 62.8 kPa で 6 分

図1 模型の寸法[mm] 図2 raとE'の関係

カ天秤を用いて空力特性値を測定した.また,実験 模型はヤング率 10 MPa のフレキシブルレジンを用 いて、3 D プリンタで製作した.本来であれば、イ ンフレータブル構造であることから,空気の充填圧 によって柔軟性を変えるべきであるが,天秤の許容 値内で製作できる大きさの模型では充填圧 0.7 MPa が限度である.したがって,本研究では、バルート 内部をくり抜き,みかけの縦弾性係数を変化させた 模型を用いて遷音速風洞実験を行った.なお、実験 模型の寸法を図 1 に、バルート内部のくり抜き半径 (以下 ra) とみかけの縦弾性係数(以下 E')の関係 を図 2 に示す.

3.2 流体構造連成解析

実験結果を検討するにあたり,解析ソフト AN-SYS AIM を用いて流体構造連成解析を行った.通 風条件,モデルの寸法は風洞実験と同じであるが, 解析モデルはバルート内部をくり抜くのではなく, 図2にプロットした E'をパラメータとして解析を 行った.

4. 結果および考察

4.1 通風中の模型の形状変化

図3は通風中の実験模型の様子を4Kカメラで 撮影したものであり、(a)(b)(c)(d)ではraの 増加に伴い、通風方向の変化量(以下H)も増加 していることが確認できる.ただし、(a)では通風 開始5秒後に座屈し破断したため、破断直前の静止 画としている.

4.2 柔軟性と形状変化の関係

図4はE'とHの関係を示しており,E'の増加に 伴い,Hが減少していることが確認できる.また, E'=5.9 MPaの塑性域と剛体模型を除き,E'とHは

比例関係にあることも読み取れる.

4.3 柔軟性と抗力値の関係

図5はE'と抗力値の関係を示しており,遷音速 風洞実験では,E'=8.7 MPaのとき抗力値が最大と なり,E'=7.6 MPaのときの抗力値が続き,どちら も剛体模型やHが小さなra=0mmのときの抗力 値よりも大きいことが確認できる.また,(○)は 遷音速風洞実験で得られた変形量を模擬したモデル の解析値,(×)は流体構造連成解析で得られた変 形量を模擬したモデルの解析値であり,どちらも弾 性範囲では実験値よりも小さな値であることが確認 できる.

これらの結果から,Hだけでなく,断面が変形 することで,投影面積が変化し抗力値に影響を与え ていると考えられる.

4.4 空洞が投影面積に与える影響

柔軟性と抗力値の関係を考慮するにあたり,バル ート内部の空洞による形状変化を解析によって可視 化した.解析は長さ50mm,円筒半径10mm,空 洞半径raの円筒モデルの両端を固定し,風洞実験 と同じ条件で行った.図6は円筒の中間断面の形状 変化を示しており,raの増加に伴い,楕円形状に 変形していることがわかる.また,この形状変化は 投影面積の増加にも寄与していると考えられる.

5. まとめ

以上の結果より,風洞実験条件下では,バルート を用いることで最大 586.3 N の抗力値を得ることが できる.また,H だけでなく空洞による投影面積 の変化も考慮する必要があることが示唆された.

6. おわりに

本学会は自身初めての発表であり、多くの学びが ありました.ご指導下さった大津広敬教授,助言を 下さった研究者の皆様に深く感謝いたします.