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Abstract

In this paper, as one approach for mathemat-
ical analysis of evolutionary algorithms with
real number chromosomes, we focus our atten-
tion on crossovers, give a general framework of
the description for the change of the distribu-
tion of the population through them, and ver-
ify the properties of crossovers based on the
framework. This framework includes various
crossover which have been proposed and we ap-
ply our result to these crossover methods.

1 Introduction

A lot of experimental and theoretical researches on Evo-
lutionary Algorithms (EA) have been recently reported.
In the theoretical results, most of them are ones for
EAs using bit strings as chromosomes, in particular,
the Simple Genetic Algorithms (SGA). These are based
on the theory of Finite Markov Chain [Dawid, 1994;
Davis and Principe, 1993; Nix and Vose, 1992; Rudolph,
1994] because the SGA uses bit strings with a constant
length. However, the state spaces of EAs using real num-
ber chromosomes are in�nite and uncountable sets and
there are di�culties di�erent from the SGA to investi-
gate the time evolution.
Rudolph derived the conditions for the convergence in

EAs with general state spaces and a �nite population size
using the concept of Markov Kernel [Rudolph, 1996]. In
this result, however, the selection and mutation a�ects
the convergence and the e�ect of the crossover is not
considered.
On the other hand, Qi and Palmieri derived the prop-

erties of the genetic operations including a uniform
crossover in EAs with an in�nite population size [Qi and
Palmieri, 1994a; 1994b]. In these results, the changes
of the population density in the in�nite population size
through the genetic operations are the main object. In
this paper, we also focus our attention on the change of
the population density through crossovers.
In the case of EAs using discrete value chromosomes,

Booker theoretically showed the properties of crossovers
based on the recombination distribution inspired by
Geiringer's result, a kind of the probability at which

schemata is generated by crossovers [Booker, 1992]. Our
analysis in the case of EAs using real number chromo-
somes is based on the relation between the population
densities before and after crossovers, and the change
of the mean values and covariances on loci. For this
purpose, we have given a framework of the descrip-
tion for the change of the distribution of the popula-
tion through crossover, called Linear Crossover [Nomura,
1997]. The previous version of this framework did not
include one{point, multi{point, or uniform crossover. In
this paper, we extend this framework to the one which
includes various crossovers which have been proposed,
one{point, multi{point crossovers, uniform crossover,
average crossover [Davis, 1990], the Unfair Average
Crossover we have proposed [Nomura and Miyoshi, 1995;
1996], and the R3 operator [Radcli�e, 1991]. We verify
the properties of these crossovers based on the results.

2 General Framework for Description

of Crossovers

2.1 Basic Formulation

In EAs with real value chromosome, each individual is
represented as a vector in the Euclid space Rm. Given
two parentsX and Y (2 Rm), we assume that crossovers
produce two o�springs X0 and Y 0 from the parents.

In this paper, we consider the crossover represented in
the following form:

X = (X1; X2; : : : ; Xm); Y = (Y1; Y2; : : : ; Ym)

X 0 = (X 0
1; X

0
2; : : : ; X

0
m); Y

0 = (Y 0
1 ; Y

0
2 ; : : : ; Y

0
m)

X 0
i = aiXi + (1� ai)Yi; Y

0
i = (1� bi)Xi + biYi (1)

(i = 1; : : : ;m)

Here, (a; b) = (a1; : : : ; am; b1; : : : ; bm) is a stochastic vari-

able onR2m whose distribution function is s(a; b). More-
over, we assume the following condition:

s(a; b) = s(b; a) for 8(a; b) 2 R2m; (2)

jCi(a; b)j = ai + bi � 1 6= 0 (3)

for 8(a; b) s:t: s(a; b) 6= 0



0
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here,

Ci(a; b) =

�
ai 1� bi

1� ai bi

�
;

j � j : a determinant of a matrix

1
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The form in (1) is represented by the following linear

transformation on R2m:

(X 0; Y 0) = (X;Y )F (a; b); (4)

F (a; b) =

�
A I � B

I �A B

�
A = diag(ai); B = diag(bi)0

B@
here,
I : m�m unit matrix,
diag(hi) : a diagonal matrix
with the i-th diagonal element hi

1
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(2) represents that the production of the o�springs by
(a; b) is done at the same probability as that by (b; a)
and the probability density of a is the same as that of b.
(3) represents that the linear transformation on R2m in
(4) has the inverse transformation if s(a; b) has a positive
value.
Now, It is easily shown that the following statements

for Ci(a; b) and F (a; b) are obtained:

jF (a; b)j =

mY
i=1

jCi(a; b)j =

mY
i=1

(ai + bi � 1) (5)

Ci(a; b)
�1 =

�
a0i 1� b0i

1� a0i b0i

�
(6)

a0i =
bi

ai + bi � 1
; b0i =

ai

ai + bi � 1
(7)

F (a; b)�1 =

�
A0 I �B0

I �A0 B0

�
(8)

A0 = diag(a0i); B
0 = diag(b0i)

(i = 1; : : : ;m)

2.2 Representation of Various Crossovers
based on the Framework

We can represent one{point, uniform crossover, the av-
erage crossover, the unfair average crossover, and the R3

operator using the above framework in the following way.

One{point Crossover

One{point crossover produces two o�springs from a pair
of parents by randomly selecting a point on the chromo-
somes and replacing the former and latter half of each
parent from the point at a probability r. Thus, we rep-
resent it in the following form:

(X 0; Y 0) = (X;Y )

�
diag(�ki) I � diag(�ki)

I � diag(�ki) diag(�ki)

�

�ki =

�
1 (i = 1; : : : ; k)
0 (i = k + 1; : : : ;m)

(9)

at Probability
r

m� 1
(k = 1; : : : ;m� 1)

(X 0; Y 0) = (X;Y ) at Probability 1� r

Thus, s(a; b) in this case is represented in the following
form:

s(a; b) =

m�1X
k=1

r

m� 1
�(a� �k)�(b� �k) (10)

+ (1� r)�(a� 1)�(b� 1)0
@�k = (

kz }| {
1; : : : ; 1;

m�kz }| {
0; : : : ; 0)

1
A

�
here, �(�) : Dirac's function

1 = (1; 1; : : : ; 1)

�
Uniform Crossover

Uniform crossover produces two o�springs from a pair of
parents by uniformly replacing the elements on each lo-
cus of the parents at a probability r. Thus, we represent
it in the following form:

(X 0; Y 0) = (X;Y )� (11)�
diag(�i1���ik;i) I � diag(�i1���ik;i)

I � diag(�i1���ik;i) diag(�i1���ik;i)

�
;

1 � i1 < i2; < � � � < ik � m;

�i1���ik;i =

�
0 (i 2 fi1; : : : ; ikg)
1 (otherwise)

at Probability rk(1� r)m�k (k = 0; : : : ;m)

Thus, s(a; b) in this case is represented in the following
form:

s(a; b) =

mX
k=0

rk(1� r)m�k
� (12)

X
1�i1<i2;<���<ik�m

�(a� �i1���ik)�(b� �i1���ik )

(�i1���ik = (�i1���ik;1; : : : ; �i1���ik;m))

Average Crossover

The average crossover produces one o�spring from a pair
of parents by averaging the elements on each locus of
the parents at probability r [Davis, 1990]. By assuming
that another o�spring is produced as a copy one of the
parents, we represent it in the following way:

(X 0; Y 0) = (13)8>>>>>>><
>>>>>>>:

(X;Y )

�
1
2I 0
1
2I I

�
at Probability r

2

(X;Y )

�
I 1

2
I

0 1
2
I

�
at Probability r

2

(X;Y ) at Probability 1� r

Thus, s(a; b) in this case is represented in the following
form:

s(a; b) =
r

2
�(a�

1

2
1)�(b� 1) (14)

+
r

2
�(a� 1)�(b�

1

2
1)

+ (1� r)�(a� 1)�(b� 1)



Unfair Average Crossover

The Unfair Average Crossover [Nomura and Miyoshi,
1995; 1996] produces two o�spring from a pair of par-
ents at probability r by the following way:

X 0
i = (1 + �)Xi � �Yi; (i = 1; : : : ; j)

X 0
i = ��Xi + (1 + �)Yi; (i = j + 1; : : : ;m)

Y 0
i = (1� �)Xi + �Yi; (i = 1; : : : ; j)

Y 0
i = �Xi + (1� �)Yi (i = j + 1; : : : ;m)

(0 < � <
1

2
)

Here, � is a constant and j is randomly selected among
f0; 1; : : : ;mg. Thus, we represent it in the following
form:

(X 0; Y 0) =

8>>>>>>>>>>><
>>>>>>>>>>>:

(X;Y )

�
Ak I �Bk

I �Ak Bk

�
at probability r

2(m+1)

(X;Y )

�
Bk I �Ak

I �Bk Ak

�
at probability r

2(m+1)

(X;Y ) at probability 1� r

(15)

Ak = diag(�ki); Bk = diag(�ki)

�ki =

�
1 + � (i = 1; : : : ; k)
�� (i = k + 1; : : : ;m)

�ki =

�
� (i = 1; : : : ; k)
1� � (i = k + 1; : : : ;m)

(k = 0; : : : ;m)

Thus, s(a; b) in this case is represented in the following
form:

s(a; b) =

mX
k=0

r

2(m+ 1)
� (16)

(�(a� �k)�(b� �k) + �(a� �k)�(b� �k))

+ (1� r)�(a� 1)�(b� 1)�
�k = (�k1; : : : ; �km)
�k = (�k1; : : : ; �km)

�

R3 Operator

The R3 operator produces o�springs from a pair of the
parents by picking any point in the hypercuboid includ-
ing the parents at probability r [Radcli�e, 1991]. By
assuming that one o�spring is produced as a copy one of
the parents and another is produced as the above way,
we represent it in the following way:

(X 0; Y 0) =

8>>><
>>>:

(X;Y )

�
diag(ai) 0

I � diag(ai) I

�
or

(X;Y )

�
I I � diag(bi)
0 diag(bi)

� (17)

at probability r

(X 0; Y 0) = (X;Y ) at probability 1� r0
BBB@

ai; bi : uniform random variables
in [�d; 0)

S
(0; d];

d (� 1) : a constant
(i = 1; : : : ;m)

1
CCCA

Thus, s(a; b) in this case is represented in the following
form:

s(a; b) =
r

2
(u(a)�(b� 1) + �(a� 1)u(b)) (18)

+ (1� r)�(a� 1)�(b� 1)

u : R
m
! R

u(c) =

8<
:

1
(2d)m

(c 2 ([�d; 0)
S
(0; d])m)

0 (otherwise)

3 Change of Distribution of Population

through Crossovers

In this paper, we assume that the population of the GA
consists of in�nite individuals. Then, the statistical state
of the population is represented by the population den-
sity [Qi and Palmieri, 1994b]. In this section, we describe
the change of the distribution of the population through
the crossover in (1) using the population density.

3.1 Description of Population Density

Now, let q(x) be the population density before a
crossover, and p(x) be the population density after the
crossover. Moreover, let pXY (x; y) be the density of
the parents for the crossover, and pX0Y 0(x; y) be the
density of the o�springs for the crossover. Because
the two parents are selected independently, we obtain
pXY (x; y) = q(x)q(y). Moreover, p(x) is derived from
the joint probability density pX0Y 0(x; y) in the following
way:

p(x) =

Z
R
m

pX0Y 0(x; y)dy =

Z
R
m

pX0Y 0(y; x)dy (19)

Moreover, we assume that (a; b) and (X;Y ) are statis-
tically independent on each other. Then, for any mea-
surable set M on R2m, we obtain the following equation
from (3), (4) and the independence between (a; b) and
(X;Y ):Z

M

pX0Y 0(x; y)dxdy = Prob((X 0; Y 0) 2M)

= Prob((X;Y )F (a; b) 2M and (a; b) 2 R2m)

= Prob((X;Y )F (a; b) 2M and (a; b) 2 �)�
here,

� = f(a; b) 2 R2m ; s(a; b) 6= 0g

�
= Prob((X;Y ) 2MF (a; b)�1 and (a; b) 2 �)�

Note that MF (a; b)�1 is also measurable
since F (a; b) is continuous.

�

=

Z
�

Z
MF (a;b)�1

pXY (x; y)s(a; b) dxdy dadb



=

Z
M

(Z
�

pXY

�
(x; y)F (a; b)�1

�
jF (a; b)j

s(a; b)dadb

)
dxdy

In the above equation, we used the variable transforma-
tion (x; y)! (x; y)F (a; b). Thus, we obtain the following
relation between pXY and pX0Y 0 :

pX0Y 0(x; y) =

Z
�

pXY

�
(x; y)F (a; b)�1

�
jF (a; b)j

s(a; b)dadb (20)

Thus, we obtain the following equation from (19) and
(20):

p(x) =

Z
�

s(a; b)

jF (a; b)j
� (21)�Z

R
m

pXY

�
(x; y)F (a; b)�1

�
dy

�
dadb

=

Z
�

s(a; b)

jF (a; b)j
��Z

R
m

q (xA0 + (I � A0)y) q (x(I �B 0) + yB0) dy

�
dadb

This equation represents the change of the density
through the crossover.
Now, we consider the mean value of a function of the

chromosomes f : Rm
! R on the population density

p(x). From (21), this value is represented in the following
equation:

E(f; p) =

Z
R
m

f(x)p(x)dx

=

Z
�

s(a; b)

jF (a; b)j
��Z

R
2m

f(x)pXY

�
(x; y)F (a; b)�1

�
dxdy

�
dadb

=

Z
�

s(a; b)� (22)�Z
R

2m

f(xA+ y(I �A))q(x)q(y)dxdy

�
dadb

 
here,
E(g; r) : the mean value of a function g

on a probability density r

!

In the above equation, we used the variable transforma-
tion (x; y) ! (x; y)F (a; b)�1.

3.2 Changes of Moments

Based on the above result, we can calculate the change of
the mean value of each coordinate and the covariance be-
tween the coordinates on the population density through
the crossover.
Substituting xi for g(x) in (22), we obtain the follow-

ing equation which represents the change of the mean
value:

E(xi; p) =

Z
�

s(a; b)� (23)

�Z
R

2m

(aixi + (1� ai)yi)q(x)q(y)dxdy

�
dadb

=

Z
�

s(a; b) (aiE(xi; q) + (1� ai)E(xi; q)) dadb

= E(xi; q) (i = 1; : : : ;m)

that is, the following theorem was proved:

Theorem 1 The mean value on the population density
is not changed through the crossover described in (1).

Next, we calculate the change of the covariance. We
note that for the covariance between functions f and g
on a probability density r, V (f; g; r), is described as the
following way:

V (f; g; r) = E((f �E(f; r))(g � E(g; r)))

= E(fg; r)� E(f; r)E(g; r)

First, we obtain the following equation which repre-
sents the change of the mean value of xixj , in the same
way as the above:

E(xixj ; p) =

Z
�

s(a; b)� (24)Z
R

2m

(aixi + (1� ai)yi)(ajxj + (1� aj)yj)

q(x)q(y)dxdy dadb

=

Z
�

f(2aiaj � ai � aj)V (xi; yi; p)

+E(xixj ; q)g s(a; b)dadb

= E(2aiaj � ai � aj ; s)V (xi; xj ; q) + E(xixj ; q)

(i = 1; : : : ;m)

Thus, from (23) and (24), we obtain the following equa-
tion which represents the change of the covariance:

V (xi; xj ; p) = E(xixj ; p)� E(xi; p)E(xj ; p) (25)

= E(2aiaj � ai � aj ; s)V (xi; xj ; q)

+E(xixj ; q)� E(xi; q)E(xj ; q)

= (E(2aiaj � ai � aj ; s) + 1)V (xi; xj ; q)

that is, the following theorem was proved:

Theorem 2 For any i and j 2 f1; : : : ;mg, the covari-
ance between the i{th and j{th coordinates on the pop-
ulation density after the crossover described in (1) is
the product of that before the crossover and the constant
PCij = E(2aiaj � ai � aj ; s) + 1.

The values PCij represent a diversi�cation property
of the crossover.

3.3 Application for Some Crossovers

We apply the results in the previous section to the
crossovers described in section 2.2 and verify the prop-
erties of them.
From (9){(18), we obtain the following result for each

crossover method:



One{point Crossover:

PCij =
r

m� 1

m�1X
k=1

(2�ki�kj � �kj � �kj) + 1

=
r

m� 1
(i+ j � 2max(i; j)) + 1

= �
r

m� 1
ji� jj+ 1

Thus, 1 � r � PCij � 1. In particular, PCii = 1
and PCij < 1 if i 6= j and r > 0.

Uniform Crossover:

PCij = 1 +

mX
k=0

rk(1� r)m�k
X

1�i1<i2;<���<ik�m

(2�i1���ik;i�i1���ik;j � �i1���ik;i � �i1���ik;j)

If i 6= j,

PCij = 1 + 2

m�2X
k=0

rk(1� r)m�k

�
m� 2
k

�

�2

m�1X
k=0

rk(1� r)m�k

�
m� 1
k

�

= 1 + 2(1� r)2 � 2(1� r)

= 1 + 2r(r � 1)

Thus, 1
2
� PCij � 1. In particular, PCij < 1 if

0 < r < 1.

If i = j,

PCij = 1 + 2

m�1X
k=0

rk(1� r)m�k

�
m� 1
k

�

�2

m�1X
k=0

rk(1� r)m�k

�
m� 1
k

�

= 1

Average Crossover:

PCij = 2

(
r

2

�
1

2

�2

+
r

2
+ (1� r)

)

�2

�
r

2

1

2
+
r

2
+ (1� r)

�
+ 1

= 1�
r

4

Unfair Average Crossover:

PCij = 1 +
r

2(m+ 1)

mX
k=0

(2�ki�kj � �ki � �kj + 2�ki�kj � �ki � �kj)

= 1 +
r

2(m+ 1)

�
2min(i; j)

�
�2 + (1� �)2

�

+ 4(min(i; j)�max(i; j))�2

+ 2(m�max(i; j) + 1)
�
(1 + �)2 + �2

�
� (m� i+ 1) (1 + 2�)� i (1� 2�)

� (m� j + 1) (1 + 2�)� j (1� 2�)g

= 1 +
r
�
(2(m+ 1)� 4ji� jj)�2 � ji� jj

	
m+ 1

In particular, PCii = 1 + 2r�2.

R3 Operator:

PCij = 1 +

r

2

Z
([�d;0)

S
(0;d])m

(2aiaj � ai � aj)u(a)da

=
r

2(2d)m

(
2

Z
([�d;0)

S
(0;d])m

aiajda

�

Z
([�d;0)

S
(0;d])m

aida

�

Z
([�d;0)

S
(0;d])m

ajda

)
+ 1

=
r

(2d)m

Z
([�d;0)

S
(0;d])m

aiajda+ 1

=

�
1 (i 6= j)

1 + rd2

3
(i = j)

3.4 Discussion

We can derive the following discussion from the above
results.
In the cases of one{point and uniform crossovers, the

correlations between the di�erent coordinates in the pop-
ulation decrease through the crossovers and the devia-
tions do not change. Although these results are the ones
on only the second order moments, they support the re-
sult which Qi and Palmieri derived [Qi and Palmieri,
1994b], that is, a kind of extension of Geiringer's results
in the case of discrete values [Booker, 1992] to the case
of real values.
The average crossover makes not only the correlations

between the di�erent coordinates but also the deviation
in the population decrease.
In the case of the unfair average crossover, the correla-

tions between the di�erent coordinates in the population
change dependent on the distance between the coordi-
nate. In particular, it makes the deviation increase and
has a diversi�cation property. The R3 also operator has
the same property, although it does not change the corre-
lations between the di�erent coordinates. Thus, the un-
fair average crossover and the R3 operator are expected
to have a high capacity of exploration in combination
with the cohesion property of the selection toward the
global maximum �tness values [Qi and Palmieri, 1994a].

4 Conclusion

We investigated the change of the population density
through the crossovers. As results, it was shown that the



crossovers included by our framework does not change
the mean values of the population density, and it propor-
tionally changes the covariances dependent on the prob-
ability of the crossover operations.
As future problems, we must investigate the time evo-

lution of the population density through the selection,
crossover, and mutation. Furthermore, we must investi-
gate the change of the �tness in the population through
the time, and clarify the convergence properties and the
conditions for the convergence in the crossover.
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