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Abstract: Many neural networks for the blind separation problem

have recently been proposed. However, in most of them, delays

on input signals to networks are not considered. In this paper, we

propose an extension of the Herault-Jutten network that is applied

to input signals including delays. Moreover, we present results of

comparative simulations between the original Herault-Jutten net-

work and our method for cases where the input signals are direct

signals from sources and delay signals, such as re
ections o� walls.

1. Introduction

The problem of multi-channel blind separation of sources such as the

"cocktail-party" problem arises in diverse �elds in neural computation (in-

cluding the hearing and olfactory systems) and in applied science (including

radar, speech processing, and digital communications). This problem is how

to separate source signals from observable signals in which the sources are

mixed through an unknown channel. The problem was formalized by Jut-

ten and Herault in the 1980's [1] and many neural network models for this

problem have recently been proposed [3][4][5][6][7].

In much research for the blind separation problem, the following formal-



ization is basically used. X1(t); X2(t); : : : ; Xn(t) (t = 0; 1; : : :) are source sig-

nals and are assumed stationary and statistically independent of one another.

When E1(t); E2(t); : : : ; En(t) are observable signals, the following relation is

assumed:

E(t) = AX(t) (t = 0; 1; : : :) (1)

X(t) = (X1(t); X2(t); : : : ; Xn(t))
t
; E(t) = (E1(t); E2(t); : : : ; En(t))

t

where, A is an n � n non-singular mixing matrix with constant values and

(�)t denotes the transpose of a vector. The purpose of the blind separation

problem is to estimate the unknown matrix A using only the observable sig-

nals E1(t); E2(t); : : : ; En(t) and to �nd the inverse operation that separates

the source signals from the observable signals.

However, the above formalization does not re
ect some of the problems in

the real world. For example, let us imagine the situation where two persons

speak in a closed room; now, consider separating of each speech signal from

the outputs of two microphones. Although it is assumed that each direct

speech signal reaches the two microphones at the same time in Equation (1),

in fact, each signal reaches the microphones at a di�erent time. Furthermore,

re
ection signals from the walls, 
oor, and ceiling reach the microphones with

greater delay. Therefore, the following relation between source signals and

observational signals exists:

E(t) =

mX
i=0

A(i)X(t� i) (t = 0; 1; : : :) (2)

where, the de�nitions and the assumptions of X(t) and E(t) are the same as

those in Equation (1) and A(i) (i = 0; : : : ;m) are n�nmatrices with constant

values. Methods using the formula in Equation (1), such as the Herault-

Jutten network (H-J network)[1], are unable to separate source signals from

observable signals like in Equation (2).

Matsuoka and Kawamoto have proposed a neural network appropriate

for the observational signals in Equation (2) [7]. In this paper, we extend

the H-J network and propose a neural network model for blind separation

where observable signals are made from delayed source signals. Moreover,

we present results of comparative simulations between our method and the

original H-J network.

2. Herault-Jutten Network and its Extension

2.1 Feedforward Process

Figure 1 shows the original H-J network and the extension we propose for the

case of n = 2.

When the observable signal vector E(t) is given as an input, the n-

dimensional output vector S(t) = (S1(t); S2(t); : : : ; Sn(t)) of the H-J network
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Figure 1: Original and Extended H-J Networks

is given by

S(t) = E(t)� CS(t) = (I + C)�1E(t) (3)

where, C = (Cij) are n�n matrices with Cii = 0 (i = 1; : : : ; n). We consider

the e�ect of delayed signals and extend the H-J network to the following

formula:

S(t) = E(t)�

DX
k=0

C(k)S(t� k) (4)

= (I + C(0))�1

 
E(t)�

DX
k=1

C(k)S(t� k)

!

where, C(k) = (C(k)ij ) (k = 0; : : : ; D) are n � n matrices with C(k)ii =

0 (i = 1; : : : ; n; k = 0; : : : ; D). From the de�nition, if D equals 0, the feedfor-

wrd process of this network equals that of the original H-J network.

2.2 Learning Rule

In the original H-J network, the weights are updated based on the gradient

descent method for the function Si(t)
2 of Cij(j = 1; : : : ; n; i 6= j). From

Equation (3),
@S(t)

@Cij
= �(I + C)�1

@C

@Cij
S(t) (5)

is given. From the condition that the matrix @C

@Cij
has 1 at the (i; j) part and

0 at the other part and the �rst order expansion of (I + C)�1, the following



learning rule is derived:

dCij

dt
= �Si(t)Sj(t) (i; j = 1; : : : ; n; i 6= j) (6)

where, � is the learning parameter. As a result, when the weights converge,

the output signals are independent of one another.

We also derive a learning rule from the gradient descent method for the

function Si(t)
2 of C(k)ij(j = 1; : : : ; n; i 6= j; k = 0; : : : ; D) . With Equation

(4),

@S(t)

@C(0)ij
= �(I + C(0))�1

(
@(I + C(0))

@C(0)ij
S(t) +

DX
l=1

C(l)
@S(t� l)

@C(0)ij

)
(7)

is given. Moreover, for k > 0,

@S(t)

@C(k)ij
= �(I + C(0))�1

(
@C(k)

@C(k)ij
S(t� k) +

DX
l=1

C(l)
@S(t� l)

@C(k)ij

)
(8)

is given. Here, we regard S(t� l) (l > 0) as a constant for C(k)ij . From the

condition that matrices
@(I+C(0))

@C(0)ij
and

@C(k)

@C(K)ij
have 1 at the (i; j) part and

0 at the other part and the �rst order expansion of (I + C(0))�1, we obtain

the following learning rule:

dC(k)ij

dt
= �Si(t)Sj(t� k) (i; j = 1; : : : ; n; i 6= j; k = 0; : : : ; D) (9)

When the weights converge, the output signals are independent of one another

in the same way as in the original H-J network. This learning rule is an

extension of that of the original H-J network.

Note:

Although we include the matrix C(0) in the de�nition of our network,

we often set C(0) = 0. Therefore, in the strict sense, our network is not an

extension of the H-J network. However, using the simulations, it was shown

that the existence of C(0) did not a�ect the separation ability of our network.

3. Simulations

We executed comparative simulations between the original H-J network and

our neural network for the observable signals in Equation (2). As shown in

Figure 2, we assumed that auditory signals from two sources were mixed and

reached two microphones far from the sources (n = 2).



Here, we assumed that the �rst

(resp. the second) microphone

was placed in front of the �rst

(resp. the second) source and

that the line between the two

sources and the line between the

two microphones were perpen-

dicular to the wall.
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Figure 2: The situation assumed in

the simulations

3.1 Observable Signals for Experiments

We used the following two kinds of signals as source signals:

X1(t) = sin(2�t=100)

X2(t) = a random noise with amplitude 2.0

�
(10)

Figure 3 shows these source signals.
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Figure 3: Source Signals for the Simulations (Upper: X1(t), Lower: X2(t))

Moreover, we set the mixture matrices A(i) in Equation (2) for the fol-

lowing two cases:

Case 1: Re
ection signals from the wall did not exist:

D = 3; A(0) = A(2) = 0; A(1) =

�
0:7 0:0

0:0 0:7

�
; A(3) =

�
0:0 0:3

0:3 0:0

�

Case 2: Re
ection signals from the wall existed:

D = 7; A(0) = A(2) = A(4) = 0; A(1) =

�
0:7 0:0

0:0 0:7

�
;

A(3) =

�
0:0 0:3

0:3 0:0

�
; A(5) =

�
0:0 0:18

0:18 0:14

�
; A(7) =

�
0:04 0:0

0:0 0:0

�
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Figure 4: Observable Signals for the Simulations in Case 1 (not including

delayed re
ection signals, Upper: E1(t), Lower: E2(t))
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Figure 5: Observable Signals for the Simulations in Case 2 (not including

delayed re
ection signals, Upper: E1(t), Lower: E2(t))

Figures 4 and 5 show these observable signals. These matrices were calcu-

lated based on the following assumptions; the distance between each source

and the front microphone and the distance between a source and the wall

corresponded to one sampling time, the decay rate of the signal from each

source to the front (resp. non-front) microphone was 0.7 (resp. 0.3) and the

decay rates of signals were inversely proportional to the distance rates.

3.2 Results of Simulations

In the simulations, we set the learning parameter � = 0:01 in both the original

and the extended H-J network. Moreover, we prepared 5 delay units for Case

1 and 10 delay units for Case 2 in the extended H-J network.

Figures 6, 7, and 8 show the outputs of the original H-J network, our

extended H-J network, and that with C(0) = 0 for the observable signals in

Case 1. Moreover, 9, 10, and 11 show the outputs of them for the observable

signals in Case 2. We show only the signal S1(t) for each method because the

signal S2(t) became almost random in these simulations.
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Figure 6: Output Signal S1(t) of the Original H-J Network for the Observable

Signals in Case 1
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Figure 7: Output Signal S1(t) of the Extended H-J Network for the Observ-

able Signals in Case 1 (D = 5, C(0) existed)
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Figure 8: Output Signal S1(t) of the Extended H-J Network for the Observ-

able Signals in Case 1 (D = 5, C(0) did not exist)

As shown in Figures 6 and 9, the original H-J network was not able to

separate the source signals because of the e�ect of the delayed signals included

in the observable signals. On the other hand, for our extended H-J networks,

the output signals similar to the original signals were obtained after about

t = 500. Although the envelopes on the waves of the output signals were a

little distorted, the output signals of our networks were much more similar

to the source signal (the sine wave) than that of the original H-J network,

regardless of the existence of C(0).

Moreover, we regarded these networks as echo cancellers and evaluated

"Echo Return Loss Enhancement (ERLE)", often used in the evaluation for

echo cancellers. In these simulations, we de�ned ERLE with time average in

the following:

ERLE(t) = 10 log10

�
E[(0:7X1(t� 1)� S1(t))

2]

E[(0:7X1(t� 1))2]

�
[db]
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Figure 9: Output Signal S1(t) of the Original H-J Network for the Observable

Signals in Case 2
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Figure 10: Output Signal S1(t) of the Extended H-J Network for the Observ-

able Signals in Case 2 (D = 10, C(0) existed)

-2
-1
0
1
2

0 100 200 300 400 500 600 700 800 900 1000

Figure 11: Output Signal S1(t) of the Extended H-J Network for the Observ-

able Signals in Case 2 (D = 10, C(0) did not exist)

Here, E[�] is a expected value of a stochastic variable. We compared S1(t) with

0:7X1(t�1) because the observable signals in Case 1 include the source signal

X1(t) with the maximum amplitude 0.7 and shortest deley 1. Moreover, in

the acutual calculations of the above expected values, we used time average

values instead of the real expected values. Figure 12 shows ERLE of each

method. The ERLE of the original H-J network remained about at �5db all

the time. In contrast, the ERLEs of our networks decreased below �20db

after about t = 500 and our networks showed the higher capacity of signal

separation than that of the original H-J network in cases where observable

signals includes delayed source signals.

Table 1 shows the weights �nally obtained in our network. The weights

corresponding to C(0) were almost 0 and did not a�ect the outputs. Moreover,

the weights corresponding to the second delay unit were bigger than the

others. A possible reason is that the delay of the earliest source signal included

in the observable signals was 1, that of the latest one was 3, and the di�erence
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Figure 12: ERLE on S1(t) on each method for the observable

between them was 2 for Case 1.

Table 1: The Weights Finally Obtained in the Extended J-H network for Case

1
k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

C(k)12 0.00 -0.01 0.42 0.00 -0.01 -0.01

C(k)21 0.00 0.09 0.08 0.06 0.04 0.07

The above results are ones for simple examples. We have executed simu-

lations for mixed real and auditory signals, based on an assumption similar

to that of the above simulations. This will be dealt with in future works.

3.3 Discussion

Using the above simulations, we veri�ed the e�ectiveness of our network to

some degree. However, there remains several problems.

Although we could prepare a su�cient number of delay units in our net-

work for the above simulations, the number of delay units is limited in a real

environment. As a solution, we should consider investigating observable sig-

nals, inferring the numbers of delayed source signals included in observable

signals, and preparing only the units corresponding to them. Moreover, we

should consider adaptively adjusting the corresponding delay numbers within

�nite delay units given in advance.

We also have another important problem. For the original H-J network,

the existence of optimal solutions for signal separation is guaranteed and the

conditions under which the learning of the network reaches the optimal solu-

tions have been analyzed [1][2]. We should analyze the existence of optimal



solutions for the separation of signals in Equation (2) and the condition of

successful learning in Equation (9).

4. Conclusion

We have proposed an extension of the H-J network to cope with signals in-

cluding delays and have veri�ed the e�ectiveness of our network by compar-

ative simulations with the original H-J network. It was concluded that our

extended H-J network was superior to the original H-J network for signals

including delays.

References

[1] C. Jutten and J. Herault, \Blind separation of sources, Part I : An adap-

tive algorithm based on neuromimetic architecture," Signal Processing,

vol. 24, pp. 1{10, 1991.

[2] E. Sorouchyari, \Blind separation of sources, Part III : Stability analysis,"

Signal Processing, vol. 24, pp. 21{29, 1991.

[3] L. Molgedey and H. G. Schuster, \Separation of a Mixture of Indepen-

dent Signals Using Time Delayed Correlations," PHISICAL REVIEW

LETTERS, vol. 72, no. 23, pp. 3634{3637, 1994.

[4] S. Amari, A. Cichoski, and H. H. Yang, \Recurrent Neural Networks For

Blind Separation Of Sources," in Proc. 1995 International Workshop

on Nonlinear Theory and Its Applications (NOLTA'95), pp. 37{

42, Dec 1995.

[5] A. J. Bell and T. J. Sejnowski, \Fast blind separation based on informa-

tion theory," in Proc. 1995 International Workshop on Nonlinear

Theory and Its Applications (NOLTA'95), pp. 43{47, Dec 1995.

[6] A. Cichoski, W. Kasprzak, and S. Amari, \Multi-Layer Neural Networks

with a Local Adaptive Learning Rule for Blind Separation of Sources Sig-

nals," in Proc. 1995 International Workshop on Nonlinear Theory

and Its Applications (NOLTA'95), pp. 61{65, Dec 1995.

[7] K. Matsuoka and M. Kawamoto, \Blind Signal Separation Based on a

Mutual Information Criterion," in Proc. 1995 International Work-

shop on Nonlinear Theory and Its Applications (NOLTA'95),

pp. 85{90, Dec 1995.


