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Abstract. Heider’s balance theory is one of theories on micro char-
acteristics of triad relations in social psychology. However, it has not
sufficiently been discussed what relations there are between group dy-
namics and this micro characteristic, that is, what situations appear in
convergence of the group dynamics based on balance of individual triads.
This paper proposes a formalization of this group dynamics as a finite
Markov chain, mathematically analyzes absorbing states of this Markov
chain, and verifies their characteristics based on computer simulations.
Moreover, it considers influence of a person fixing relations to others
through the process in this Markov chain.

1 Introduction

As one of theories on micro characteristics of individuals in social psychology,
balance theory proposed by F. Heider [5] states a psychological stability of an
individual included in a triad relation. In this theory, a person (P), another
person (O), an object or the third person (X), and relations from P to O,
from O to X, and from P to X construct a system (called POX system). These
relations have either + or — value corresponding to the fact that the person likes
or dislikes the object respectively. Heider’s theory argues that a POX system is
balanced if and only if the product of the signs on these three relations is +,
and if the system is not balanced P changes one of the relations to O and X so
that the POX system becomes balanced. As shown in Fig. 1, il the system is not
balanced, then P inverts either the sign of P — O or that of P — X to balance
the POX system.

Although the original balance theory is limited to triad relations, its extension
to groups consisting of more than three persons have been proposed [1, 3, 7]. The
concept of balance in social networks as graphs has been applied in several fields
of social science [7]. These studies of balance in social networks focus on network
structures of balanced situations based on graph theory. However, it has not
sufficiently discussed what characteristics balanced graph structures have in the
sense of micro—macro dynamics, more concretely, whether balanced situations
really appear and what graph structures actually appear in large groups as a
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Fig. 1. Balanced and Imbalanced Situations of POX Systems in Heider’s Balance The-
ory.

macro structure of group dynamics based on micro behaviors of the original
POX systems in individual persons.

As an approach to this problem in the field of artificial societies, Wang and
Thonegate [8] proposed a simulation model of group dynamics based on POX
systems, consisting of full connected graphs. However, this study focuses on
non—digraphs, that is, cases where all the dyad relations are symmetric. If more
realistic situations should be considered, we need to analyze and simulate group
dynamics of social networks represented as digraphs.

In this paper, we propose a formalization of group dynamics based on POX
systems as a finite Markov chain with a state space consisting of signs on all the
edges in digraphs, characterize the concept of balance as absorbing states of this
Markov chain, and execute computer simulations of the group dynamics based
on the Markov chain.

2 Group Dynamics based on POX Systems as a Finite
Markov Chain

We assume that there are N persons and relations between them, and these
relations have + or — value, where + and — mean that the person likes and
dislikes the other person, respectively. Here, we do not deal with ambivalent
states in individuals that have both + and — at the same time, or no sign.
This social network can be represented as a signed digraph G = (P, A), P =
{p1,p2,---, o~} A={(ay,s1),{as, s2),...,(aar, sar)}. P is the set of N vertices
in the digraph, corresponding to the N persons, and A is the set of pairs ol edges
a. and signs on them s..

If some persons change some signs on edges from them to others based on
balance of their POX systems mentioned in the previous section, the vector
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Fig. 2. An Example of the Finite Markov Chain of the Group Dynamics (4 Persons)

of the signs (s1,$2,...,5,) is modified without changing the vertex and edge
structures. Since selection of persons and their edges in this modification is
stochastic and dependent only on the current signs of relations, group dynamics
based on this modification process equals to a finite Markov chain with the state
space S = {(s1,82,...,8n) ¢ 8; = +1,—1}, in which the total number of states
is 2M. Fig. 2 shows an example of this finite Markov chain with 4 persons who
have relations each other, that is, on a full connected digraph with 4 vertices.

2.1 Relations between Absorbing States and Balanced Situations

Absorbing states in the above finite Markov chain as group dynamics are situ-
ations where all the POX systems are balanced. Some conventional and mathe-
matical results clarify characteristics of these states.!

! In this paper, we refer to Hiramatsu [6] to mention these mathematical studies.



In cases of general digraphs and graphs, that is, social networks that have
more than three persons and are not necessarily full connected ones, Cartwright
and Harary [1] defined balanced situations as those where all the cycles (semi—
cycles in cases of digraphs) in the networks are positive, that is, for any cycle
(semi—cycle) the product of signs on all the edges in the cycle is positive.

In cases of both digraphs and graphs, Harary et. al., [3] proved a structure
theorem arguing that a situation is balanced if and only if the set of vertices
can be partitioned into two subsets so that all the edges between vertices in the
same subgroup are signed with + and all the edges between vertices in different
subgroups are signed with — (it is permitted that one of the subgroups is empty).

Furthermore, Flament [2] proved that balanced situations mentioned above
equal to situations where all the triangles are positive. Since triangles are nec-
essarily not POX systems (e.g., A — B — C — A is a triangle, but not a POX
system), the condition that all the triangles are positive is stronger than the
condition that all the POX systems are balanced.

If a graph is a fully connected digraph, that is, a digraph in which there
is necessarily an edge between all the pairs of vertices, we can show that the
following three conditions are equal each other:

1. A fully connected digraph is balanced in the sense of Cartwright and Harary’s
definition, that is, all the semi—cycles in the digraph are positive.

2. All the POX systems in the digraph are balanced.

3. The set of vertices in the digraph can be partitioned into two subsets so that
all the edges between vertices in the same subgroup are signed with + and
all the edges between vertices in different subgroups are signed with —.

1 = 2 is trivial since any POX system is a semi—cycle.

2 = 3 can be proved as follows.

If all the POX systems are balanced, all the dyad relations are symmetric
since an asymmetric dyad relation between p; and p; causes imbalance in POX
systems of the third person pg. Then, the following relation between vertices is
an equivalence relation:

def .
Pi ~ Py = {p; = p; or the edge p; — p; is +}

For this equivalence relation ~, vertices in the same equivalence class are con-
nected each other by edges with + and vertices in the different classes are con-
nected each other by edges with —. If there are more than two classes, POX
systems consisting of vertices in the different three classes are imbalanced. Thus,
there are at most two classes, and this situation equals to the statement of 3.

3 = 1 is trivial since every semi—cycle crossing the two subsets has an even
number of crossings between the subsets.

The above mathematical result means that absorbing states of the finite
Markov chain equal to balanced situations in the conventional sense. In other
words, stable states of group dynamics based on micro behaviors of POX systems
are situations where all the persons like each other or the group is separated into



two subgroups in which all the persons in the same subgroup like each other and
the persons in the different groups dislike each other.

The above proof for the relation between balanced stuations and absorbing
states of the Markov chain based on POX systems can simply be applicable for
cases of non—digraphs. Wang and Thonegate [8] showed based Monte Carlo sim-
ulations that group dynamics of POX systems converged to balanced situations
in cases of fully connected non—digraphs (including both cases with and without
ambivalent states), and our mathematical analysis supports their result.

2.2 Influence of a Fixing Person

As shown in the previous section, group dynamics of N persons having relations
each other based on POX systems is a finite Markov chain of which absorbing
states are situations where all the persons like each other or the persons are
partitioned into two subgroups disliking each other. Since there are N(N — 1)
relations in this case, the finite Markov chain has a total of 2V(V=1) states.
Moreover, the total number of the absorbing states is %Zﬁio CcN =2N-1,

Here, we consider another finite Markov chain by adding the (N + 1)-th
person pya1 to the original N persons. We assume that this person does not
change relations to the other persons through group dynamics. In this paper, we
call this person “a fixing person”.

We represent a state of the original finite Markov chain at a time ¢ as the
following N x N matrix MS(t):

— Slg(t) Slg(t) e SlN(t)
Sgl(t) — Sgg(t) e SoN (t)
MS@Et) = | ssi(t) ss2(t) — : (1)
: : e s(n—1yn{t)
sni(t) sna(t) -+ snv—1)(t) -

Here, s;;(t) is the relation from the i-th person p; to the j-th person p; at the
time t, and all the diagonal elements in M S are empty. Then, we can represent a
state of the newly constructed finite Markov chain at the time ¢ as the following
(N 4+ 1) x (N + 1) matrix NS(¢):

s1n+1) (1)
NS(t) = MS(t) 5 (2)
sn(N+1)(t)
singi(t) oo svgnn(t) -

Here, all the elements s y41);(t) (j = 1,...,N) in the (N 4 1)-th row are fixed
through the process, that is, s(nv11);(t) = s(v+1);(0) (¢ > 1). Thus, the newly
constructed Markov chain has a total of 2V states.

We consider absorbing states of the above finite Markov chain. If py41 has
+ relations to p;,, ..., p;, and — relations to p;,, ,, ..., piy, and all the POX



systems of p1, ..., py including relations to py11 are balanced, the group is par-
titioned into two subgroups A = {p;,,...,pi;,Pn+1} and B = {pi,,,...,Pin }>
all the persons in the same subgroup have + relations each other, and all the per-
sons in the different subgroups have — relations each other. In fact, {p1,...,pn}
is partitioned into two subgroups A’ and B’ disliking each other by the char-
acteristic shown in the previous section. If p;,p; € A’ and pr € B’, balance of
all the POX systems implies that s;ni1) = Sj(v+1) # Sk(v+1)- Furthermore,
it implies that s(yi1y = Siv4+1) 7 Sk(v+1) = S(v+1)k- Lhese facts imply that
A= A/ U {pN+1},B = B/ or A= B/ U {pN+1},B = A/.

This mathematical property means that a fixing person in the above sense
influences the process of the finite Markov chain so that there is only one absorb-
ing state where the grouping intended by the fixing person is realized. Particular
cases of d = N and d = 0 correspond to the situation where all the persons
including py+1 like each other, and the situation where all the persons except
for py11 like each other and pyoq is disliked by them, respectively.

The existence of a fixing person suggests that it can operate structures of the
group to some extent. For example, there is a folk psychological discourse that if
one of members in a group plays a role of a villain exclusive for other members
they are settled. In fact, a family psychologist interprets phenomena of juvenile
delinquents having parents on bad terms as balance of the family POX system
in the same sense as our model with a fixing person [4]. The case of d = 0 in our
model with a fixing person gives a mathematical meanings to this discourse.

3 Simulations

As shown in the previous section, the group dynamics based on individual POX
systems is represented as a finite Markov chain having absorbing states corre-
sponding to situations where all the person like each other, or the persons are
partitioned into two subgroups disliking each other. In addition, the existence
of a person who fixes all the relations to the others modifies the structure of
the original Markov chain to limit absorbing states to only one state where the
grouping intended by the fixing person is realized. However, this analysis does
not clarify whether this finite Markov chain has cyclic states. In other words,
there is a possibility of the existence of cyclic states where modification of some
POX systems and that of other POX systems are repeated one another.

In case of symmetric dyad relations, that is, non—directed social networks,
Wang and Thonegate suggested based on computer simulations that there is no
such cyclic state [8]. In this paper, we also verify based on computer simulations
what states appear through the above finite Markov chain of group dynamics
based on POX systems.

We execute our simulations based on the following procedures:

1. Initialize {s;;(0)} in equations (1) and (2) into +1 or —1 randomly.
2. Execute the following procedures synchronously for i = 1,..., N:
(a) Select j and k randomly (i # j,i # k,j # k).



(b) If sjx(t)si;(t)sin(t) = —1, then si;(t + 1) = —si;(t), sin(t + 1) = su(?),
or 8;;(t+ 1) = s;;(t), si(t+ 1) = —s(t)
(Szl(t + 1) - Szl(t) for 7& j? k)
3. Iterate from t =1 tot =T — 1 or until s;%(¢)s:;()si(t) = +1 is satisfied
for any triplet (¢,7,k) (¢ # 4,1 # k,j £ k).

We set T = 107 and run 300 trials with different random seeds for one simulation
configuration.

3.1 Cases without a Fixing Person

We first tried 5 configurations: 4 persons, 5 persons, 6 persons, 7 persons, and
8 persons without a fixing person. Table 1 shows types of grouping in absorbing
states and the numbers of the corresponding states, the numbers of trials that
converged to the corresponding states and their rates among 300 trials, average
number of iteration for convergence to each grouping, and its standard deviation
for each configuration.

As shown in Table 1, the state converged to one of absorbing states shown in
the previous section in all the trials for all the configurations, and any cyclic state
was not observed. However, there is almost no difference between the numbers
of trials for convergence to the absorbing states. For example, in the case of
4 persouns, there are 4 states with (3 : 1) grouping and 3 states with (2 : 2)
grouping, and the average number of trials for convergence to each state is 41.1
in the case of (3: 1) and 35.3 in the case of (2 : 2). Since the number of trials
for convergence to (4 : 0) (the situation where all the persons like each other) is
29, no trend existed that there is a specific absorbing state where convergence is
concentrated. Moreover, no trend existed that there is a specific absorbing state
to which convergence is faster than the other states. The same fact is shown in
the other configuration.

3.2 Cases with a Fixing Person

Next, we tried another 4 configurations: 5 persons including a fixing person, 6
persons including a fixing person, and 7 persons including a fixing person, and
8 persons including a fixing person. We assume that the fixing person has fixed
— relations to all the other persons (d = 0). Table 2 shows the number of trials
that converged to the absorbing state intended by the fixing person (the situation
where all the persons except for the fixing person like each other and the fixing
person is disliked by them) among 300 trials, average number of iteration for
convergence to the state, and its standard deviation for each configuration.

As shown in Table 2, the state converged to only one absorbing state in all
the trials for all the configurations, and any cyclic state was not observed.

3.3 Numbers of Iteration Required for Convergence

As mentioned in the previous section, as the number of persons increases from
N to N + 1, the number of states of the Markov chain without a fixing person



Table 1. Results of the Simulations without a Fixing Person for 4-8 Persons (SD:
Standard Deviation)

N 4
Types of Grouping 4:013:1] 2:2
(4 Corresponding States) (1 (A (3
{(#. Corresponding States) (1) (4) (3)
#. Trials that Converged to the States|| 29 165 106
(Rates in the Total Number) (9.7%)|(55%)|(35.3%)
Average #. Iteration for Convergence || 37.6 | 37.1 | 43.2
(SD) (30.4) [(35.5)| (42.4)
N 5
Types of Grouping 5:0 | 4:1 3:2
(4 Correspondine States) (1 (E) (10)
{(#. Corresponding States) ) B) (1Y)
#. Trials that Converged to the States|| 16 108 176
(Rates in the Total Number) (5.3%) | (36%) |(58.7%)
Average #. Iteration for Convergence || 185.4 | 184.9 | 160.9
(SD) (188.5)|(207.6)| (165.5)
N 6
Types of Grouping 6:0 5:1 4:2 3:3
(4 Correspondine States) (1 (6) (15) (20)
{(#. Corresponding States) L) ) (o) (2Y)
#. Trials that Converged to the States 7 63 140 90
(Rates in the Total Number) (2.3%) | (21%) |(46.7%)| (30%)
Average #. Iteration for Convergence || 1069.1 |1022.1 | 1220.8 | 1340.3
(SD) (1209.2) |(937.4) |(1161.3)|(1351.5)
N 7
Types of Grouping 7:0 6:1 5:2 4:3
(#. Corresponding States) (1) (7) (21) (35)
#. Trials that Converged to the States 5 29 91 175
(Rates in the Total Number) (1.7%) | (9.7%) | (30.3%) | (58.3%)
Average #. Iteration for Convergence || 15129.2 | 11847.8 | 13135.3 | 15224.4
(SD) (10085.8) [(10660.2)|(13374.7)|(13430.9)
N 8
Types of Grouping 8:0 7:1 6:2
(#. Corresponding States) (1) (8) (28)
#. Trials that Converged to the States 2 14 62
(Rates in the Total Number) (0.7%) | (4.7%) | (20.7%)
Average #. Iteration for Convergence [|241338.5 | 194909.1 | 239980.8
(SD) (51426.5) |(281313.9)|(259982.4)
N 8
Types of Grouping 5:3 4:4
(#. Corresponding States) (56) 35)
#. Trials that Converged to the States 148 74
(Rates in the Total Number) (49.3%) | (24.7%)
Average #. Iteration for Convergence || 259982.8 | 224161.2
(SD) (256895.0)[(219238.3)




Table 2. Results of the Simulations with a Fixing Person for 5-8 Persons (SD: Standard
Deviation)

#. Persons 5 6 7 8
#. Trials that
Converged to the State 300 300 300 300
Intended by the Fixing Person
Average #. Iteration 666.6 | 4719.9 | 60699.0 | 1102131.3
for Convergence to the State
(SD) (627.8)|(4762.9)|(62077.6)|(1136276.6)

increases from 2V (V=1 to 2V(N+1) that is, 22V times. That with a fixing person
increases from 2V 1% to 2N2, that is, 22V ~1 times. Here, we investigate the
influence of this increment and the existence of a fixing person to the number of
iteration needed for convergence to the absorbing states.

Fig. 3 shows the average numbers of interation needed for convergence to
the absorbing states in the simulations shown in section 3.1 and 3.2. Note that
the vertical axis in the figure is shown with log scale. This figure suggests that
the number of iteration needed for convergence to the absorbing states almost
exponentially increases as the number of persons increases, in both cases with a
fixing person and without a fixing person.

Moreover, Fig. 3 also suggests that the average numbers of interation for
convergence in cases with a fixing person are a constant times as large as those
in cases without a fixing person. The numbers of states in cases of NV persons
including a fixing person and not including are 20V —1? and 2NV -1 respectively.
The decrement rate of numbers of states by the existence of a fixing person
is 2=(N=1)_ Moreover, the numbers of absorbing states in cases of N persons
including a fixing person and not including are 1 and 2V~ respectively. The
decrement rate of numbers of absorbing states by the existence of a fixing person
is also 2=V=1 and thus the rate of absorbing states in all the states is 9~ (N-1)
in both cases. Nevertheless, the Markov chain with a fixing person spent much
more time than that without a fixing person for convergence.

4 Conclusion and Discussion

In this paper, we proposed a formalization of group dynamics based on balance
of individual POX systems as a finite Markov chain, analyzed relations between
absorbing states of this Markov chain and balanced situations, and verified the
mathematical characteristics by executing computer simulations. Moreover, we
mathematically analyzed and executed computer simulations to verify influences
of a specific person who fixes relations to others through process, a fixing person.

In both the case without a fixing person and that with a fixing person, no
cyclic state was observed in the simulation results of the finite Markov chain. It
suggests that as far as persons behave only based on balance theory the situation
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Fig. 3. The Average Numbers of Interation Needed for Convergence to the Absorbing
States in the Simulations (the horizontal axis: the numver of the persons N}

of the group converges to a balanced situation. If all the persons modify their
POX systems based on their balance, there is a trend that the group is separated
into two subgroups exclusive each other since the situation where all the persons
like each other is just one possibility among many absorbing states.

Moreover, the number of iteration needed for convergence to the absorbing
states extremely increase as the number of persons increases. In particular, more
than 200,000 iterations were needed for convergece for the case of 8 persons. On
the other hand, Wang and Thonegate [8] reported that at most 100,000 iterations
were needed for convergence even in cases of 25 persons in their Monte Carlo
simulations. Although we cannot naively compare our results to those, this fact
suggests that convergence to balanced situations in a larger group spends much
more time in more realistic situations.

Moreover, a fixing person reduces the number of absorbing states in the
original Markov chain in the sense that the state where the grouping intended
by the fixing person is realized becomes only one absorbing state. On the other
hand, convergence to the only absorbing state need more time than convergence
in the original Markov chain. This fact suggests that it is hard to control the
grouping based on relations of POX systems in more realistic situations.

However, our formalization in this paper have some problems.

First, influence of a fixing person in our model lacks a realistic meanings. In
our model, the fixing person can influence to the group so that any grouping
is realized. In particular, the case of d = N means that the fixing person can
lead to the situation where all the persons including itself like each other. From
fork psychological perspectives, however, it seems to be less possible than the



case that the fixing person plays as a villain, for example, as in case of juvenile
delinquents having parents on bad terms [4].

We should consider that real social networks are influenced by many factors
like individual experiences and cognitive properties, in particular, cognitive bias
for information with negative meanings. As one of future problems, we should
consider social network models including artificial agents with these individual
and cognitive properties. Moreover, we should extend our formalization to gen-
eral digraphs that are not fully connected.

Moreover, we confirmed only based on computer simulations that no cyclic
states were not observed. Finally, it should analytically proved, for example, by
classifying states of the Markov chain based on locality of balanced POX systems
in the whole group.
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