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Abstract

Since the concept of autopoiesis was proposed as a model of minimal living systems by
Maturana and Varela, and applied to social systems by Luhmann, there has been only a few
mathematically strict models to represent the characteristics of it because of its difficulty for
interpretation. In order to explore the validity of this concept, this paper proposes a more
general formal description of autopoiesis based on the theory of category. This paper focuses
on the distinction of organizations and structures, and then discusses its implications and
problems on formalization of autopoiesis.

1 Introduction

Autopoiesis gives a framework in which a system exists as an organism through physical and
chemical processes, based on the assumption that organisms are machinery [7]. According to the
original definition of it by Maturana and Varela, an autopoietic system is one that continuously
produces the components that specify it, while at the same time realizing itself to be a concrete
unity in space and time; this makes the network of production of components possible. An
autopoietic system is organized as a network of processes of production of components, where
these components:

1. continuously regenerate and realize the network that produces them, and

2. constitute the system as a distinguishable unity in the domain in which they exist.

The characteristics of autopoietic systems Maturana gives are as follows:

Autonomy: Autopoietic machinery integrates various changes into the maintenance of its or-
ganization. A car, the representative example of non–autopoietic systems, does not have
any autonomy.

Individuality: Autopoietic machinery has its identity independent of mutual actions between
it and external observers, by repeatedly reproducing and maintaining the organization.
The identity of a non–autopoietic system is dependent on external observers and such a
system does not have any individuality.



Self–Determination of the Boundary of the System: Autopoietic machinery determines
its boundary through the self–reproduction processes. Since the boundaries of non–
autopoietic systems are determined by external observers, self–determination of the bound-
aries does not apply to them.

Absence of Input and Output in the System: Even if a stimulus independent of an au-
topoietic machine causes continuous changes in the machine, these changes are subor-
dinate to the maintenance of the organization which specifies the machine. Thus, the
relation between the stimulus and the changes lies in the area of observation, and not in
the organization.

This system theory has been applied to a variety of fields including sociology [5]. However, there
has been only a few mathematically strict models to represent the characteristics of it because
of its difficulty for interpretation. McMullin has studied a computational model of autopoiesis
as 2–D biological cells [9]. Bourgine and Stewart proposed a mathematical formalization of
autopoiesis as random dynamical systems and explored the relationships between autopoiesis
and cognitive systems [2]. Letelier, et. al., suggested the relationships between autopoiesis
and metabolism–repair systems [6], which is an abstract mathematical model of biological cells
proposed by Rosen [13]. Nomura also proposed a mathematical model of autopoiesis based on
Rosen’s system [10]. These models vary from abstract algebraic formalization to computational
models based on artificial chemistry.

In order to explore the validity of autopoiesis more deeply, this paper reconsiders necessary con-
ditions for modeling characteristics of autopoiesis based on Kawamoto’s theory [4], and discusses
a problem of the above existing models of autopoiesis. On these consideration and discussion,
this paper uses the category theoretic formalization of autopoiesis, which was proposed by No-
mura [11, 12] to clarify whether autopoiesis can really be represented within the conventional
mathematical frameworks.

2 Distinction between Organization and Structure

In Japan, Kawamoto has continued his own development of autopoiesis [4]. Kawamoto’s theory
focuses on circular relations of components and the network of production processes of compo-
nents.

Kawamoto’s important claims are as follows: an autopoietic system is a network consisting of
relations between production processes of components. This network produces components of
the system, and the components exist in physical spaces. Then, the system exists only if the
components reproduce the network of production processes. The structure of the system is a
realization of the system through the operation of the system in the physical space, and the
organization of the system is a form of the network. The organization is functionally specified,
although the structure is realized in the physical space.

The above claims by Kawamoto have an important implication. The organization of a system
differs from the structure since they exist in different levels. This distinction is mentioned
in Maturana and Varela’s original literature [8]. Figure 1 shows this aspect. The distinction
between organizations and structures in an autopoietic system can be interpreted as a distinction
between categories on which the organization and structure of a autopoietic system are defined
in a mathematical formalization of it.

This distinction is suggested from another formal perspective.

Rosen compared machine systems with living systems to clarify the difference between them,
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Figure 1: Aspect of Autopoiesis based on Distinction between Organization and Structure

based on the relationship among components through entailment [13]. In other words, he focused
his attention on where the function of each component results from in the sense of Aristotle’s
four causal categories, that is, material cause, efficient cause, formal cause, and final cause. As a
result, Rosen claimed that a material system is an organism if and only if it is closed to efficient
causation. Furthermore, Rosen suggested that systems closed under efficient cause cannot be
described with their states because they lead to infinite regress [13].

Nomura proposed a category theoretic formalization of autopoiesis under the assumption that
closure under entailment or production is a necessary condition for a system to be autopoietic
because the components reproduce themselves in the system [11, 12]. Although this formalization
showed the possibility of constructing systems closed under entailment in specific categories,
these categories had to satisfy the condition that operands coincide with operators (X ' XX).
Although Soto–Andrade and Varela provided a category satisfying this condition (the category
of partially ordered sets and continuous monotone maps with special conditions), this category
is very special [14].

The above two works have an important implication. If circular relations between components
and their production process network are closed under entailment, this closedness may be hard
to be formalized in general state spaces. On the other hand, the structure of an autopoietic
system must be realized in a state space as a physical one. These implications suggest the
distinction between organizations and structures in formalization of autopoiesis.

However, there is no general model of autopoiesis reflecting this distinction. The existing com-
putational models and dynamical system models are defined on state spaces specific for them.
In other words, they specify structures of systems as relations between elements of the systems,
and have no explicit formalization of the organizations.

On the other hand, Nomura’s category theoretic model [11, 12] represents only the aspect of
closedness in organizations, and lacks the structures in autopoiesis. The next section proposes a
category theoretic formalization of autopoiesis involving the distinction between organizations
and structures, by complementing this lack.



3 Category Theoretic Model of Distinction between Organiza-

tions and Structures

3.1 Theory of Category

Category theory is an algebraic framework to abstractly handle the collection of mathematical
objects having some specific properties, such as “the collection of all groups”, “the collection
of all sets”, “the collection of all topological spaces”, “the collection of differential manifolds”,
and so on [1]. In this framework, an individual space or set is dealt with as an object, and a
function or map from an object to another object is dealt with as a morphism corresponding to
an arc between them. Thus, the inner structures of any object and morphism are reduced, and
pure relations of morphisms between are focused on. This can make it possible to investigate
what category of mathematical objects a specific relation between objects (for example, closed
relations between objects and morphisms) is satisfied in.

In addition, category theory can deal with relations of categories themselves as functors. This
can make it possible investigate relations between a specific category and general ones such as
state spaces.

As mentioned in the previous section, the organization of an autopoietic system should be
formalized as a network of components and production processes, closed under entailment. Then,
the structure of the system should be realized in a state space. The proposal in this paper is that
the organization is formalized in a specific category, the structure is formalized in the category
of general state spaces, and realization from the organization to the structure in the autopoietic
system is modeled by a functor between the categories.

3.2 Completely Closed Systems as Organizations

This paper shows a formalization using “completely closed systems” as an example of organi-
zation [11, 12]. Although there are other closed systems to be considered as organizations, this
paper focuses on this simple type of systems to provide with easier interpretation.

We assume that an abstract category C has a final object 1 and product object A × B for any
pair of object A and B. The category of all sets is an example of this category. Moreover,
we describe the set of morphisms from A to B as HC(A, B) for any pair of objects A and B.
A element of HC(1, X) is called a morphic point on X. For a morphism f ∈ HC(X, X) and
a morphic point x on X, x is called a fixed point of f iff f ◦ x = x (◦ means composition of
morphisms) [14]. Morphic points and fixed points are respectively abstraction of elements of a
set and fixed points of maps in the category of sets.

When there exists the power object Y X for objects X and Y (that is, the functor · × X on C
has the right adjoint functor ·X for X), note that there is a natural one–to–one correspondence
between HC(Z × X, Y ) and HC(Z, Y X) for any objects X, Y , Z satisfying the diagram in the
left half of figure 2. Thus, there is a natural one–to–one correspondence between morphic points
on Y X and morphisms from X to Y satisfying the diagram in the right half of figure 2 [15].

When components in a system are not only operands but also operators, the easiest method
for representing this aspect is the assumption of existence of an isomorphism from the space of
operands to the space of operators [3].

Now, we assume an object X with powers and an isomorphism f : X ' XX in C. Then,
there uniquely exists a morphic point p on (XX)X corresponding to f in the above sense, that
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Figure 2: Natural One–To–One Correspondence between HC(Z × X, Y ) and HC(Z, Y X)
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Figure 3: The Diagrams of a Completely Closed System and the Entailment Relations

is , p′ = f . Since the morphism from XX to (XX)X entailed by the functor ·X , fX , is also
isomorphic, there uniquely exists a morphic point q on XX such that fX ◦ q = p. We can
consider that p and q entail each other by fX . Furthermore, there uniquely exists a morphic
point x on X such that f ◦ x = q because f is isomorphic. Since we can consider that x and q

entail each other by f , and f and p entail each other by the natural correspondence, the system
consisting of x, q, p, f , and fX is completely closed under entailment. Moreover, if x is a fixed
point of g : X → X naturally corresponding to q, that is, g◦x = x, we can consider that x entails
itself by g. Figure 3 shows the diagrams of this completely closed system and the entailment
relations.

3.3 Structures Induced by Completely Closed Systems

Here, we consider the formalization of structures induced by the organization mentioned in the
previous section as follows.

We assume a family of categories {Cλ}λ, and that each Cλ includes a completely closed system

{Xλ, xλ ∈ HCλ
(1, Xλ), fλ ∈ HCλ

(Xλ, Xλ
Xλ), qλ ∈ HCλ

(1, Xλ
Xλ), pλ ∈ HCλ

(1,
(

Xλ
Xλ

)Xλ

), gλ ∈

HCλ
(Xλ, Xλ)}. Moreover, we assume another category D. Here, it is assumed that D is the

category consisting of state spaces and maps between them, or its subcategory.
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Figure 4: Organization of an Autopoietic System and Its Realized Structure

Now, we assume a family of functors {Fλ : Cλ → D}λ such that Fλ(1Cλ
) = 1D, Y = Fλ(Xλ),

y = Fλ(xλ) ∈ HD(1, Y ) = Y for all λ, and αλ = Fλ(gλ) ∈ HD(Y, Y ) = H(1, Y Y ) = Y Y for any
λ (here, we can regard HD(1, Y ) = Y and HD(Z, Y ) = HD(1, Y Z) = Y Z since D is the category
of state spaces). Note that αλ(y) = αλ ◦ y = Fλ(gλ) ◦ Fλ(xλ) = Fλ(gλ ◦ xλ) = Fλ(xλ) = y for
any λ, that is, y is a fixed point of αλ.

We propose that the family of the completely closed systems {{Xλ, xλ, fλ, qλ, pλ, gλ}}λ is an
organization of an autopoietic system and {Y, y, {αλ}λ} is its structure realized on the category
D through the family of the functors {Fλ} if for any λ one of the following conditions is satisfied:

1. ∃βλ ∈ HD(Y, Y Y ) = HD

(

1, (Y Y )
Y

)

= (Y Y )
Y

s.t., βλ(y) = αλ, βλ
Y (αλ) = βλ

2. ∃βλ ∈ HD(Y, Y Y ), λ1, λ2, and βλ2
∈ HD(Y, Y Y ) s.t., βλ(y) = αλ1

, βλ = βλ2

Y (αλ2
)

The above relationship between the organization and structure represents the aspect that the
structure is entailed repeatedly within the organization. Figure 4 shows these organization and
realized structure.

4 Discussion

This section discusses some implications of the formalization of autopoiesis proposed in the
previous section, and some problems of it.



4.1 Implications

The proposed formalization of autopoiesis explicitly represents a distinction between organiza-
tions and structures. The following four facts can be implied from this representation.

First, the organization is static and closed under entailment between morphic points and mor-
phisms. This implies the aspect of autopoiesis that the network consisting of relations between
production processes of components is reproduced by the components.

Second, by distinguishing the category on which the structure is realized from the categories
on which the organization is defined, a kind of dynamics in the structure is implied. On this
dynamics, a part of the structure αλ is dealt with. The first condition of structure in the previous
section means that αλ is dynamically maintained and the structure is closed by the existence
of βλ. The second condition of structure in the previous section means that αλ is dynamically
changed within the organization, that is, change of the structure under the unique organization.

Third, by introducing realization as a family of functors from the categories of organization to
the category of state spaces, non–uniqueness of structures for the organization is represented.
In other words, for the same organization {{Xλ, xλ, fλ, qλ, pλ, gλ}}λ, the existence of another
structure {Y ′, y′, {α′

λ
}λ} and its realization {F ′

λ
} are implied. This suggests that a structure of

autopoiesis having an organization based some physical materials can be realized based on other
materials.

Fourth, the formalization in the paper uses completely closed systems as a simpler example of
organization. Of course, closed systems of organizations are not limited to completely closed
systems [12]. Thus, the proposed formalization implies a variety of organizations, structures,
and realization.

4.2 Problems

On the other hand, the proposed formalization of autopoiesis has the following problems.

The proposed formalization assumes that organizations are formalized on categories permitting
the existence of an isomorphism from the space of operands to the space of operators, in prior to
state spaces on which the structures are realized. Then, change of the structures is fixed within
the organizations. This is anticipation of the issues in a sense.

This is critical when we consider whether a system can be identified as autopoiesis by observers
who can only see the structure on a state space. In order for the observers to be able to identify
the system as autopoiesis, they must be able to find the organizations that cannot be formalized
on the state space, and the categories of functional spaces on which the organizations are closed in
the sense that the network consisting of relations between production processes of components
is reproduced by the components. When these observers assume the organizations based on
only the structures, however, there is arbitrariness in this assumption since the proposed model
does not include any specification of organizations from structures. In this sense, the proposed
formalization of autopoiesis may not be autopoiesis itself but just a cognitive model of the way
in which these observers identify the system as autopoiesis.

This critical problem is caused by explicit distinction of organizations and structures, and closed-
ness of organizations. As far as closedness of organizations is assumed, organizations are hard
to be found in state spaces on which structures are realized. Thus, another category in an
abstract level is necessary. As one of ways to refine the proposed formalization, we consider its
application to the existing computational and dynamical systems models of autopoiesis, that is,



investigation of categories of organization assuming these models as structures. By this applica-
tion, we can find whether the proposed formalization can discriminate between autopoietic and
non–autopoietic systems.

5 Summary

This paper focused on the distinction of organizations and structures in autopoiesis reconsidering
necessary conditions for modeling characteristics of autopoiesis based on Kawamoto’s theory [4].
Then, a general formalization of autopoesis based on category theory was proposed while explic-
itly representing the distinction of organizations and structures. In addition, some implications
and problems were discussed.

As an important future work, we consider application of the proposed framework to real systems
including biological, mental, and social systems. This can allow us to investigate whether the
proposed framework is useful to clarify the difference between autopoietic and non–autopoietic
systems at an abstract mathematical level.
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