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Abstract. Some research works have mentioned the similarity of au-
topoiesis with (M,R) systems proposed by Rosen, from the perspective
of closedness of the systems. However, there are some difference between
the aspects of closedness required for autopoiesis and (M,R) systems.
This paper aims at clarifying these differences to investigate the possibil-
ity of algebraic description of living systems, based on category theoretic
frameworks.

1 Introduction

Autopoiesis gives a framework in which a system exists as an organism through
physical and chemical processes, based on the assumption that organisms are
machinery [9]. This system theory has been applied to a variety of fields in-
cluding sociology [7]. However, there has been only a few mathematically strict
models to represent the characteristics of it because of its difficulty for inter-
pretation. McMullin has studied a computational model of autopoiesis as 2–D
biological cells [11]. Bourgine and Stewart proposed a mathematical formaliza-
tion of autopoiesis as random dynamical systems and explored the relationships
between autopoiesis and cognitive systems [2].

On the other hand, some research works have mentioned the similarity of au-
topoiesis with metabolism–repair ((M,R)) systems, which is an abstract mathe-
matical model of biological cells proposed by Rosen [16], from the perspective of
closedness of the systems. Letelier et al, [8] reviewed (M,R) systems and provided
with their algebraic example while suggesting the relationship with autopoiesis.
Chemero and Turvey [3] proposed a system formalization based on hyperset the-
ory and found a similarity between (M,R) systems and autopoiesis on closedness.
Nomura [12, 13] also proposed some mathematical models of autopoiesis while
connecting between closedness of autopoiesis and (M,R) systems.

When autopoiesis and (M,R) systems are compared in the abstract level
based on category theory, however, there are some difference between the aspects
of closedness required for autopoiesis and (M,R) systems. To explore algebraic
models of living systems, this paper clarifies these differences and reconsiders
necessary conditions for modeling characteristics of autopoiesis. On these con-
sideration and discussion, this paper uses the category theoretic formalization



of autopoiesis, which was proposed by Nomura [12–14] to clarify whether au-
topoiesis can really be represented within the conventional mathematical frame-
works.

2 Autopoiesis and (M,R) Systems

2.1 Autopoiesis

An autopoietic system is organized as a network of processes of production of
components, where these components:

1. continuously regenerate and realize the network that produces them, and
2. constitute the system as a distinguishable unity in the domain in which they

exist.

The characteristics of autopoietic systems Maturana gives are as follows:

Autonomy: Autopoietic machinery integrates various changes into the mainte-
nance of its organization. A car, the representative example of non–autopoietic
systems, does not have any autonomy.

Individuality: Autopoietic machinery has its identity independent of mutual
actions between it and external observers, by repeatedly reproducing and
maintaining the organization. The identity of a non–autopoietic system is
dependent on external observers and such a system does not have any indi-
viduality.

Self–Determination of the Boundary of the System: Autopoietic machin-
ery determines its boundary through the self–reproduction processes. Since
the boundaries of non–autopoietic systems are determined by external ob-
servers, self–determination of the boundaries does not apply to them.

Absence of Input and Output in the System: Even if a stimulus indepen-
dent of an autopoietic machine causes continuous changes in the machine,
these changes are subordinate to the maintenance of the organization which
specifies the machine. Thus, the relation between the stimulus and the changes
lies in the area of observation, and not in the organization.

In Japan, Hideo Kawamoto has continued his own development of autopoiesis
[6]. He designated the properties of autopoiesis by comparison with conventional
system theories. In particular, he focuses on the fourth item among the above
characteristics of autopoiesis, i.e., absence of input and output in the system.

When we consider the ”absence of input and output”, important is the view
where the system is understood based on the production processes. Kawamoto
claims the following: the view of the relation between inputs and outputs in the
system is one from external observers and it does not clarify the organization or
the operation of the production in the system. A living cell only reproduces its
components and does not produce the components while adjusting itself accord-
ing to the relation between itself and oxygen in the air. Although the density of
oxygen affects the production processes, external observers decide the influence



and the cell does not. As long as the system is grasped from an internal view of
the cell, the system does not have any ”inputs and outputs”.

From the above perspective, Kawamoto’s theory focuses on circular relations
of components and the network of production processes of components. His im-
portant claims are as follows: an autopoietic system is a network consisting of
relations between production processes of components. This network produces
components of the system, and the components exist in physical spaces. Then,
the system exists only if the components reproduce the network of production
processes. The structure of the system is a realization of the system through the
operation of the system in the physical space, and the organization of the system
is a form of the network. The organization is functionally specified and closed,
although the structure is realized in the physical space.

2.2 (M,R) Systems and Closure under Entailment

In relational analysis, a system is regarded as a network that consists of com-
ponents having functions. Rosen compared machine systems with living systems
to clarify the difference between them, based on the relationship among com-
ponents through entailment [16]. In other words, he focused his attention on
where the function of each component results from in the sense of Aristotle’s
four causal categories, that is, material cause, efficient cause, formal cause, and
final cause. As a result, Rosen claimed that a material system is an organism
if and only if it is closed to efficient causation. Furthermore, Rosen suggested
that systems closed under efficient cause cannot be described with their states
because they lead to infinite regress.

(M,R) systems [15] satisfy closure under efficient cause. This system model
maintains its metabolic activity through inputs from environments and repair
activity. The simplest (M,R) systems represent the above aspect in the following
diagram and the left half in figure 1.

A
f
→ B

φf

→ H(A,B)
Φf

→ H(B,H(A,B)) (1)

Here, A is a set of inputs from an environment to the system, B is a set of
outputs from the system to the environment, f is a component of the system
represented as a map from A to B, and φf is the repair component of f as a
map from B to H(A,B) (H(X,Y ) is the set of all maps from a set X to a set
Y ). In biological cells, f corresponds to the metabolism, and φf to the repair.
If φf (b) = f (b = f(a)) is satisfied for the input a ∈ A, we can say that the
system maintains itself. In addition, Φf can be constructed by the preceding (M,
R) system in the following way: For a and b such that b = f(a) and φf (b) = f ,

if b̂ : H(B,H(A,B)) → H(A,B) (b̂(φ)(a′) = φ(b)(a′) (φ ∈ H(B,H(A,B)), a′ ∈

A)) has the inverse map b̂−1, it is easily proved that b̂−1(f) = φf . Thus, we can

set Φf = b̂−1. The right half in figure 1 shows the aspect that the components
except for a are closed under entailment.
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Fig. 1. A (M,R) System and Its Entailment Relation

3 Category Theoretical Formalization of Autopoiesis and
(M,R) Systems

Category theory is an algebraic framework to abstractly handle the collection of
mathematical objects having some specific properties, such as “the collection of
all groups”, “the collection of all sets”, “the collection of all topological spaces”,
“the collection of differential manifolds”, and so on [1]. In this framework, an
individual space or set is dealt with as an object, and a function or map from
an object to another object is dealt with as a morphism corresponding to an
arc between them. Thus, the inner structures of any object and morphism are
reduced, and pure relations of morphisms between objects are focused on. This
can make it possible to investigate what category of mathematical objects a spe-
cific relation between objects (for example, closed relations between objects and
morphisms) is satisfied in. In addition, category theory can deal with relations of
categories themselves as functors. This can make it possible investigate relations
between a specific category and general ones such as state spaces.

In this paper, we assume that an abstract category C has a final object 1 and
product object A×B for any pair of object A and B. The category of all sets is an
example of this category. Moreover, we describe the set of morphisms from A to
B as HC(A,B) for any pair of objects A and B. A element of HC(1, X) is called a
morphic point on X. For a morphism f ∈ HC(X,X) and a morphic point x on X,
x is called a fixed point of f iff f ◦ x = x (◦ means concatenation of morphisms)
[17]. Morphic points and fixed points are respectively abstraction of elements of
a set and fixed points of maps in the category of sets. This abstraction is useful
when our discussion is extended to categories of which objects and morphisms
are not assumed to be sets and their maps, such as the Lindenbaum category
of which objects and morphisms are the constants and equivalence classes of
formulas of a formal theory [17].
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Fig. 2. The Diagrams of a Completely Closed System and the Entailment Relations
based on Natural One–To–One Correspondence

3.1 Category Theoretical Formalization of Autopoiesis

The fact that the components reproduce themselves in a system implies that
the components are not only operands but also operators. The easiest method
for realizing this implication is the assumption of existence of an isomorphism
from the space of operands to the space of operators [5]. Under this assumption,
Nomura [12, 13] proposed completely closed systems under entailment between
the components.

When there exists the power object Y X for objects X and Y (that is, the
functor · × X on C has the right adjoint functor ·X for X), note that there is
a natural one–to–one correspondence between HC(Z × X,Y ) and HC(Z, Y X)
for any objects X, Y , Z satisfying the diagram in the upper figure of figure 2
[18]. Thus, there is a natural one–to–one correspondence between morphic points
on Y X and morphisms from X to Y satisfying the diagram in the lower figure
of figure 2. By using the above property, we can construct completely closed
systems as follows.

Now, we assume an object X with powers and an isomorphism f : X ' XX

in C. Then, there uniquely exists a morphic point p on (XX)X corresponding to
f in the above sense, that is , p′ = f . Since the morphism from XX to (XX)X
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Fig. 3. Aspect of Autopoiesis based on Distinction between Organization and Struc-
ture, and Its Category Theoretical Formalization

entailed by the functor ·X , fX , is also isomorphic, there uniquely exists a morphic
point q on XX such that fX ◦ q = p. We can consider that p and q entail each
other by fX . Furthermore, there uniquely exists a morphic point x on X such
that f ◦x = q because f is isomorphic. Since we can consider that x and q entail
each other by f , and f and p entail each other by the natural correspondence, the
system consisting of x, q, p, f , and fX is completely closed under entailment.
Moreover, if x is a fixed point of g : X → X naturally corresponding to q,
that is, g ◦ x = x, we can consider that x entails itself by g. The lower figure of
Figure 2 shows the diagrams of this completely closed system and the entailment
relations.

Furthermore, Autopoiesis argues not only closedness of entailment between
the components but also two levels of description. Kawamoto’s claims mentioned
in the previous section have an important implication. The organization of a sys-
tem differs from the structure since they exist in different levels. This distinction
is mentioned in Maturana and Varela’s original literature [10]. The upper fig-
ure of Figure 3 shows this aspect. The distinction between organizations and
structures in an autopoietic system can be interpreted as a distinction between
categories on which the organization and structure of a autopoietic system are
defined in a mathematical formalization of it.

This fact has an important implication. If circular relations between com-
ponents and their production process network are closed under entailment, this
closedness may be hard to be formalized in general category such as state spaces.
On the other hand, the structure of an autopoietic system must be realized in a



state space as a physical one. These implications suggest the distinction between
organizations and structures in formalization of autopoiesis.

To represent the distinction between organizations and structures, Nomura
[14] proposed a model in which the organization is formalized in a specific cat-
egory, the structure is formalized in the category of general state spaces, and
realization from the organization to the structure is represented by a functor
between the categories. The lower figure of Figure 3 shows the model.

We assume a family of categories {Cλ}λ, and that each Cλ includes a com-
pletely closed system {Xλ, xλ ∈ HCλ

(1, Xλ), fλ ∈ HCλ
(Xλ, Xλ

Xλ), qλ ∈

HCλ
(1, Xλ

Xλ), pλ ∈ HCλ
(1,

(

Xλ
Xλ

)Xλ
), gλ ∈ HCλ

(Xλ, Xλ)}. Moreover, we
assume another category D. Here, it is assumed that D is the category consist-
ing of state spaces and maps between them, or its subcategory.

Now, we assume a family of functors {Fλ : Cλ → D}λ such that Fλ(1Cλ
) =

1D, Y = Fλ(Xλ), y = Fλ(xλ) ∈ HD(1, Y ) = Y for all λ, and αλ = Fλ(gλ) ∈
HD(Y, Y ) = H(1, Y Y ) = Y Y for any λ (here, we can regard HD(1, Y ) = Y and
HD(Z, Y ) = HD(1, Y Z) = Y Z since D is the category of state spaces). Note
that αλ(y) = αλ ◦ y = Fλ(gλ) ◦ Fλ(xλ) = Fλ(gλ ◦ xλ) = Fλ(xλ) = y for any λ,
that is, y is a fixed point of αλ.

The family of the completely closed systems {{Xλ, xλ, fλ, qλ, pλ, gλ}}λ is an
organization of an autopoietic system and {Y, y, {αλ}λ} is its structure realized
on the category D through the family of the functors {Fλ} if for any λ one of
the following conditions is satisfied:

1. ∃βλ ∈ HD(Y, Y Y ) = HD

(

1, (Y Y )
Y

)

= (Y Y )
Y

s.t., βλ(y) = αλ, βλ
Y (αλ) =

βλ

2. ∃βλ ∈ HD(Y, Y Y ), λ1, λ2, and βλ2
∈ HD(Y, Y Y ) s.t., βλ(y) = αλ1

, βλ =
βλ2

Y (αλ2
)

The above relationship between the organization and structure represents the
aspect that the structure is entailed repeatedly within the organization.

3.2 Category Theoretically Described (M,R) Systems

As mentioned in the previous section, (M,R) systems are closed under entailment
except for the input a. We can re–write the closed part of (M,R) systems as
follows.

For objects X and Y in C, we assume that X has powers. When a morphism
f : X → Y and a morphic point x on X are given, we assume that x satisfies
the following conditions:

∃ Gx ∈ HC(Y X , Y ) (2)

s.t., Gx ◦ z = z′ ◦ x for any z ∈ HC(1, Y X)

and Gx has its inverse morphism Fx ∈ HC(Y, Y X)

here, z′ is the morphism from X to Y naturally corresponding to the morphic
point z on Y X . When y = f ◦ x and xf is the morphic point on Y X naturally
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Entailment Relations

corresponding to f ((xf )′ = f), we obtain Fx ◦y = Fx ◦f ◦x = Fx ◦Gx ◦xf = xf .
Thus, xf is entailed by y and Fx. If we regard Fx as entailed by x, then f , y,
Fx, and xf are entailed by themselves and x.

Furthermore, if there exist an object Z with powers and morphic point z on
Z such that Y = XZ and y′ ◦ z = x, the system including y′ and z represents
the original (M,R) system.

Figure 4 shows the diagrams of this generalized (M,R) system and its entail-
ment relations.

4 Differences between Autopoiesis and (M,R) Systems

It is considered that closure under entailment or production is a necessary condi-
tion for a system to be autopoietic because the components reproduce themselves
in the system. In fact, the existing research works found the similarity of au-
topoiesis with (M,R) systems based on this closedness [8, 12, 13, 4, 3]. However,
there are two points of difference between these systems. The first one is the
difference on forms of closure.

The forms of closedness in completely closed systems as autopoiesis and
(M,R) systems reveal the difference between them. In the completely closed
system, the existence of isomorphism f between X and XX determines com-
plete closure under entailment without any condition. On the other hand, the
closedness of the (M,R) system depends on whether one of the components x

satisfies the condition represented in equation (2).



Moreover, there is also a difference on conditions of categories on which these
systems are constructed. Although completely closed systems show the possibil-
ity of constructing systems closed under entailment in specific categories, these
categories have to satisfy the condition that operands coincide with operators.
Although Soto–Andrade and Varela [17] provided a category satisfying this con-
dition (the category of partially ordered sets and continuous monotone maps
with special conditions), this category is very special.

On the other hand, Rosen [16] argued based on category theoretic frame-
works that systems closed under efficient cause like (M,R) systems cannot be
described with their states because they lead to infinite regress. However, Chu
and Ho [4] found that Rosen’s proof for this argument was not complete since
his proof assumes an implicit condition irrelevant from state space representa-
tion of systems. In fact, Letelier et al, [8] provided with an arithmetic example
of a (M,R) system constructed within the category of finite groups. These facts
imply the difference on types of categories required for autopoiesis and (M,R)
systems.

The second difference between autopoiesis and (M,R) systems is based on
distinction between organizations and structures. As mentioned in the previous
section, autopoiesis requires this distinction. However, the form of (M,R) sys-
tems does not include the explicit distinction between closed organizations and
structures realized in state spaces, and these concepts are confused.

5 Discussion and Conclusion

This paper suggested two differences between autopoiesis and (M,R) systems
from the perspective of category theoretic formalization of them, the difference
on forms of their closedness under entailment of the components and categories
required for the closedness, and the existence of distinction between organiza-
tions and structures. However, the first difference depends on the assumption
that completely closed systems are necessary conditions of autopoiesis, that is,
the existence of an isomorphism from the space of operands to the space of oper-
ators is a necessary condition of autopoiesis. This proposition has not still been
proved in a mathematically strict sense or sufficiently considered in a philosoph-
ical sense. We need to explore which mathematical conditions should be satisfied
for formalization of autopoiesis.

Moreover, it should be sufficiently discussed what contribution the differences
between autopoiesis and (M,R) systems suggested in the paper can provide with,
in the sense of the above exploration of conditions of minimal living systems. As
Chu and Ho [4] argue that Rosen’s idea based on category theory can contribute
to distinction between living and non–living systems, we also believe that cate-
gory theoretical frameworks including Rosen’s method will help us to bring us
closer to an understanding of life systems.
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