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Abstract

Autopoiesis is a neologism, introduced by Maturana and
Varela to designate the organization of a minimal liv-
ing system[9]. Maturana produced the theory of au-
topoiesis based on his works on visual nervous systems,
and then Varela developed his own system theory. Later,
Luhmann applied autopoiesis to the theory of social
systems[8]. Recently, this theory has been applied to
not only sociology but also psychopathology.

However, there are still few mathematical or compu-
tational models that represent autopoiesis itself because
of its novelty and originality. In this paper, we introduce
a recent situation for mathematical and computational
descriptions of autopoiesis, and discuss its implications
in system science.

1 Aspect of Autopoiesis

1.1 Properties of Autopoiesis

Autopoiesis gives a framework in which a system exists
as an organism through physical and chemical processes,
based on the assumption that organisms are machinary.
An autopoietic system is one that continuously produces
the components that specify it, while at the same time
realizing itself to be a concrete unity in space and time;
this makes the network of production of components pos-
sible. An autopoietic system is organized as a network
of processes of production of components, where these
components:

1. continuously regenerate and realize the network that
produces them, and

2. constitute the system as a distinguishable unity in
the domain in which they exist.

Maturana gives a car as a representative example
of non–autopoietic systems and claims the following[9]:
The self–maintenance of a car as itself is realized only
when there is a relation between inputs from a driver
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and outputs of the car. On the other hand, living systems
self–maintain themselves by repeatedly reproducing the
components and not by actions from others. Although
they take nutritious substances from the outside, the or-
ganization is not determined corresponding to the sub-
stances. The processes for self–reproduction exist firstly
and foremost, and the nutritious substances are subor-
dinate to these processes.

The characteristics of autopoietic systems Maturana
gives are as follows:

1. Autonomy:
Autopoietic machinery integrates various changes
into the maintenance of its organization. A car, the
above example of a non–autopoietic system, does
not have any autonomy.

2. Individuality:
Autopoietic machinery has its identity independent
of mutual actions between it and external observers,
by repeatedly reproducing and maintaining the or-
ganization. The identity of a non–autopoietic sys-
tem is dependent on external observers and such a
system does not have any individuality.

3. Self–Determination of the Boundary of the System:
Autopoietic machinery determines its boundary
through the self–reproduction processes. Since the
boundaries of non–autopoietic systems are deter-
mined by external observers, self–determination of
the boundaries does not apply to them.

4. Absence of Input and Output in the System:
Even if a stimulus independent of an autopoietic
machine causes continuous changes in the machine,
these changes are subordinate to the maintenance of
the organization which specifies the machine. Thus,
the relation between the stimulus and the changes
lies in the area of observation, and not in the orga-
nization.

Moreover, Kawamoto positions dy-
namical stable systems which self–maintain themselves
through metabolism to the outside, self–organizing sys-
tems such as crystals which grow while morphing them-
selves according to their environment, and autopoietic



systems, as the first, the second, and the third gener-
ation systems, respectively [6]. Kawamoto particularly
focuses on the fourth item among the above character-
istics of autopoiesis, i.e., absence of input and output in
the system.

When we consider the ”absence of input and output”,
important is the view where the system is understood
based on the production processes. Kawamoto claims
the following: the view of the relation between inputs
and outputs in the system is one from external observers
and it does not clarify the organization or the operation
of the production in the system. A living cell only re-
produces its components and does not produce the com-
ponents while adjusting itself according to the relation
between itself and oxygen in the air. Although the den-
sity of oxygen affects the production processes, external
observers decide the influence and the cell does not. As
long as the system is grasped from an internal view of the
cell, the system does not have any ”inputs and outputs”.

The gist in the concept of autopoietic systems
Kawamoto gives involves the following:

1. The set of components of a system is determined by
the operation of the system.

2. The operation of the system precedes the initial con-
dition.

3. The operation of the system is executed only to suc-
ceed itself and does not aim to produce by–products.

4. In the operation of the system, the things that hap-
pen in the system clearly differ from the things that
external observers discriminate.

1.2 Development of Autopoiesis in a Va-

riety of Research Areas

The most important characteristic of autopoiesis is its
development in not only life system theory but also a
variety of research areas such as sociology, cognitive sci-
ence, phisiology, sociology, and psychopathology.

Luhmann applied autopoiesis to the theory of social
systems, developing his own interpretation of it[8]. In
his theory of autopoiesis, the concept of communications
is introduced to solve a problem on complex systems of
autopoietic systems, that is, whether social systems as
complex systems of human mental systems can be au-
topoietic systems. In his theory, a social system is not a
whole system having human mental systems as its sub-
systems, but an autopoietic system having communica-
tions as its components. Mental systems are autopoi-
etic systems having thoughts as their components by
themselves and are coupling with social systems, that
is, each system is operationally closed and they are mu-
tually linking.

Ciompi applied cybernetic system theoreis including
autopoiesis to psychopathology[2]. He argued that cog-
nitive elements and affective elements in human mind
are indivisible and correspond to polar states in a sys-
tem called “affection–cognition schema”. Then, he con-
structed a model in which individuals’ mental systems
and family systems with them as their elements mutually
interact. Based on this model, he analyzed schizophren-
ics caught in “double bind situations” [1] and human
relations in the families that maintain the situations (in
this sense, Ciompi used dynamical stable systems in his
model and autopoiesis is explicitly not used). More-
over, Kawamoto and Hanamura applied the theory of
autopoiesis to models of schizophrenia extending the def-
inition of autopoiesis[7].

2 Difficulty in Interpretation of

Autopoiesis

In interpreting autopoiesis within the conventional sys-
tem theories, there is a difficulty to image systems based
on the verbal description mentioned in the previous se-
cions.

2.1 A Shift of Viewpoints

How systems are grasped from the view of external ob-
servers is interpreted as separating the observers from
the environment including the system, distinguishing be-
tween the system and the background in the environ-
ment, and verifying the relation between the system and
the distinguished background, that is, the outside of the
system. Autopoiesis forces us to give up this view, that
is, to put our view in the system, not in the outside of
the environment.

Kawamoto gives the following statement as an exam-
ple of this shift of views: If a person is fast running on
the ground like drawing a circle, the person just con-
tinuously reproduces the action of running, although an
external observer decides that the person is determin-
ing the boundary of the system. When the person stops
running, the boundary vanishes.

However, this shift of view is not easily acceptable in
the contemporary situation where the view of external
observers is still major in natural science. If a person
bounded to this view observes an autopoietic system,
the view shifts towards the outside of the environment
and the system is grasped as a static map or dynami-
cal system in a state space. Even if the view shifts to-
wards the inside of the system, the production processes
of the components themselves are grasped as the object
of the observation and the view of external observers is
not completely given up. In the above example of a run-
ning person, the observer produces an image of the rela-



tion between the person as the object of the observation
and the space where the person is running.

2.2 Precedability of Operations to Ele-

ments and State Spaces

Moreover, as long as the view of external observers is
not given up, the above gist of Kawamoto, in particular,
the determination of the set of components by the op-
eration and the precedability of the operation with the
initial condition in the system cannot be understood. In
the conventional system theories, state spaces where the
operation is defined firstly exist, the initial condition is
determined independent of the operation, and the prop-
erties in the state spaces by the operation such as time
evolution are discussed.

A person bounded to the view of external observers
cannot imagine the situation where the operation de-
termines its domain and initial condition. Thus, such
a person can imagine just self–organizing systems such
as hyper–circles, which belong to the second generation
systems Kawamoto claims.

3 Descriptions of Autopoiesis

Because of the novelty and originarity of autopoiesis
shown in the previous sections, there are still few math-
ematical or computational models that represent au-
topoiesis itself. A machine learning model inspired by
autopoiesis was proposed to do tasks such as pattern
recognition[3], but this model does not represent au-
topoiesis itself. Moreover, although there are some cases
where autopoietic systems are represented by simulations
using the method of computational chemistry[10], these
are specialized for models of living cells and do not rep-
resent mathematically integrated formulations of Matu-
rana’s original autopoiesis.

In this paper, we introduce some recent models of au-
topoiesis and discuss problems in them.

3.1 Quasi–Autopoietic Systems

Metabolism–Repair Systems ((M,R) systems) are a
mathematical system model introduced by Rosen to ab-
stractly formalize the functional activities of a living cell
– metabolism, repair, and replication[12]. This system
model maintains its metabolic activity through inputs
from environments and repair activity. The simplest
(M,R) systems represent the above aspect in the follow-
ing diagram:

A
f
→ B

φf

→ H(A,B)
Φf

→ H(B,H(A,B)) (1)

Here, A is a set of inputs from an environment to the
system, B is a set of outputs from the system to the
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Figure 1: (M,R) Systems and Quasi–Autopoietic Sys-
tems

environment, f is a component of the system represented
as a map from A to B, and φf is the repair component
of f as a map from B to H(A,B) (H(X,Y ) is the set of
all maps from a set X to a set Y ). In biological cells, f

corresponds to the metabolism, and φf to the repair. If
φf (b) = f (b = f(a)) is satisfied for the input a ∈ A, we
can say that the system self–maintains itself.

By using this framework of (M,R) systems, we pro-
posed a model of autopoiesis, called “quasi–autopoietic
systems”[11]. Our description of a quasi–autopoietic sys-
tem is as follows:

A
f
→ B

φ
→ H(A,B), (2)

H(B,H(A,B))
F
→ H(B,H(A,B)) (3)

Instead of the replication map from H(A,B) to
H(B,H(A,B)) in (M.R) systems, this system has an
iteration map on H(B,H(A,B)). This map determines



the system’s self by defining it as an invariant set with a
kind of ergodicity property for the map; that is, its self
QAP is defined as follows:

QAP ⊂ H(B,H(A,B)), F (QAP ) = QAP, (4)
∀φ, φ′

∈ QAP, ∃n ∈ N s.t. F n(φ′) = φ (5)

Figure 1 shows aspects of (M,R) and quasi–autopoietic
systems.

3.2 Constructive Dynamical Systems

In both (M,R) and quasi–autopoietic systems, the main
subject is the nature of relations between functions in
the systems, and the origin of the functions and relations
between them is not considered. As a method to repre-
sent the origin of systems, Fontana and Buss proposed
constructive dynamical systems by abstract chemistry,
in which chemical processes are abstractly represented
in terms of λ–calculus[4, 5].

In the conventional dynamical systems such as differ-
ential equations, the objects of which the systems con-
stitute are given in advance and the systems themselves
are represented as quantitative variables and relations
between these variables that represent properties of the
systems. Thus, the objects themselves do not appear in
the description of the systems and the systems are under-
stood as the temporal or spatial change in the numerical
value of the quantitative variables. In other words, the
conventional dynamical systems cannot directly repre-
sent the change of objects and relations between them.
Constructive dynamical systems represent dynamics of
objects of systems themselves by corresponding chemical
reactions to applications of functions in λ–calculus and
representing abstract chemical processes by simulations.

Figure 2 shows a λ–calculus flow reactor based on con-
structive dynamical systems. In this framework, one
molecule corresponds to one expression, and one chemi-
cal reaction by collision of two molecules to the result of
an application of one expression to another and reduc-
tion to a normal form. A chemical process is simulated
by preparing a finite number of expressions in the reac-
tor as an initial state, then executing a reaction by ran-
dom collision of two expressions, adding the result into
the reactor as a molecule, and removing other molecules,
repeatedly. It is shown that there are a variety of self–
organized structures such as mutual production and syn-
tactical regularities among expressions as objects in the
system in the limit set of the above dynamics. The limit
in the above dynamics represents a kind of reactant equa-
tions in a chemical process. In other words, constructive
dynamical systems are a wider framework including the
conventional dynamical systems.

remove

reactor

add

random collision

transform into
normal form

Figure 2: A λ–Calculus Flow Reactor based on Con-
structive Dynamical Systems (Fontana and Buss, 1996))

3.3 Deductive Hyper Digraphs

Tsujishita argued that λ–calculus approaches are inap-
propriate for the nature of mutual actions in life systems
because it is normal that things operating and things to
be operated are not distinguishable in the systems, and
in chemical reactions by λ–calculus the roles of them are
determined. Then, he used “deductive hyperdigraphs”
to represent autopoiesis[14].

For a set of components of a system X, the set of the
following relations is called a hyperdigraph:

Γ : a1, a2, . . . , an −→ b (a1, . . . , an, b ∈ X) (6)

Here, the above equations mean that components a1,
. . ., an generate another component b. The left figure in
Figure 3 shows that b and c generate a and a generates
b. The right figure shows that b and d generates all the
components when a is given.

A hyperdigraph is called “deductive” when it satisfies
with the following conditions:

1. each element generates itself,
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Figure 3: Examples of Hyperdigraphs (Tsujishita, 1998)

2. If a1, . . ., an generate b, then a, a1, . . ., an generate
b for any a ∈ X.

3. If Γi generates bi (i = 1, . . . , n) and b1, . . ., bn gen-
erate c, then Γ1, . . ., Γn generate c.

Deductive hyperdigraphs are a kind of abstract algebraic
structures for representation of relations between com-
ponents on generation. The above deductive conditions
mean a closed situation where each component is gen-
erated by other components in the hyperdigraph. This
closed situation corresponds to operationally closed na-
ture of autopoiesis.

4 Discussion

In order to represent autopoiesis as mathematical or
computational models, it is necessary to find machanism
that a system creates the space where it exists and the
boundary between it and the environments by itself. In
the models introduced in the previous section, however,
some important characteristics are lost.

4.1 On Quasi–Autopoietic Systems

We can interpret that quasi–autopoietic systems satisfy
with Kawamoto’s gist in section 1.1 by regarding F as
the systems’ operations and φ as their components[11].
In these systems, however, the space where the opera-
tions and components exist is given in advance. Thus,
quasi–autopoietic systems cannot represent autopoiesis
in the sense that the systems create the spaces and the
boundaries by themselves.

This problem is deeply related to the concept of “clo-
sure of efficient cause” in “relational biology” Rosen
proposed[13]. In relational analysis, a system is regarded
as a network that consists of components having func-
tions. Then, he compared machine systems with living
systems to clarify the difference between them, based on
the relationship among components through entailment.

In other words, he focused his attention on where the
function of each component results from in the sense of
Aristotle’s four causal categories, that is, material cause,
efficient cause, formal cause, and final cause. Rosen’s
conclusion is summarized as follows:

1. Machine systems are described with their states.
This fact results from considering the category of
formal models for the system.

2. If all the components of a machine system must be
entailed in the sense of efficient cause, there must
be a larger system entailing them. This causes an
infinite regress.

3. In a machine system within which all the compo-
nents are entailed in the sense of efficient cause, an
infinite decomposition of the state space happens,
thus this also causes an infinite regress.

4. Thus, any machine system is not closed under effi-
cient cause.

Then, Rosen claimed that a material system is an or-
ganism if and only if it is closed to efficient causation.
(M,R) systems satisfy the above condition ”closure under
efficient cause” in the sense that the replication map Φf

is entailed in the system by b, that is, the output of the
metabolism f [12]. However, quasi–autopoietic systems
do not because just the operation map F is not entailed
in the system. If the condition of closure under efficient
cause is required for models which represent autopoietic
systems, we must find the way in which the operation
map is constructed in the system by f and/or φ.

4.2 On Constructive Dynamical Systems

On the other hand, constructive dynamical systems look
like closed under efficient cause, that is, each object in
the limit is entailed by other objects based on applica-
tions of λ–calculus. Moreover, the limit in the above
dynamics represents a kind of reactant equations in a
chemical process. In other words, the state space for the
equation is generated through interaction among objects.

However, the set of all the possible objects in the sys-
tems are given in advance and the functions of the ob-
jects are also given in advance based on the definition of
the objects. In other words, constructive dynamical sys-
tems do not represent self–creation of the space. More-
over, since constructive dynamical systems are originated
based on chemical processes, their application is limited
to models like cells (in fact, the description of autopoiesis
by McMullin and Varela[10], which is also a model sim-
ulating chemical processes, is limited to cells).

4.3 On Deductive Hyperdigraphs

Deductive hyperdigraphs are useful for relational anal-
ysis, that is, abstractly representing relations among



components on generation without mentioning to sta-
tial structures where components are defined. Thus, it
is more abstract than (M,R) and quasi–autopoietic sys-
tems and useful for describing the way for mutual actions
of components. For examples, Figure 4 shows represen-
tations of (M,R) and quasi–autopoietic systems by hy-
perdigraphs. The figure clarifies the following facts: as
far as a is given in (M,R) systems, all the other compo-
nents mutually generate, and quasi–autopoietic systems
are not closed because no things generate F in the sys-
tems.

In the same way as (M,R) and quasi–autopoietic sys-
tems, however, deductive hyperdigraphs do not clarify
either the origin or change of relations of components on
generation, which are dealt with in constructive dynam-
ical systems.

φf

Φf

a b

f

QAP

φ

F

a b

f

(M,R) Systems Quasi-Autopoietic Systems

Figure 4: Representations of (M,R) and Quasi–
Autopoietic Systems by Hyperdigraphs

5 Conclusion

In descriptions of autopoiesis within the conventional
mathematical frameworks, important characteristics are
lost because of a kind of uncertainty on spaces, that is,
the fact that spaces where systems exist are determined
by the operations. This kind of uncertainty differs from
that in fuzzy theories, which is deal with as the degree
to which each element in a given set belongs to a subset
in it. Nevertheless, and thus, descriptions of autopoiesis
require a new mathematical framework and system sci-
ence. As a result, it may happen a paradigm shift in
engineering perspective for real adaptive systems.
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